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Abstract—High-precision robotic rotational manipulation is
crucial in fields such as nanomaterial defect detection, nanoscale
3-D observation, and nanomaterial twisting characterization.
Conventional solutions predominantly depend on the alignment
of the tracked object with the rotation axis, necessitating
stringent robotic configuration and monopolizing multiple linear
degrees of freedom (DOFs). Consequently, this significantly
impedes the dexterity of nano-manipulation. In this study, we
introduce an innovative nanorobotic manipulation system that
incorporates a rotary nano-positioner affixed to the end joint.
This configuration facilitates high-precision off-axis in-situ
rotation, alleviating the constraints associated with conventional
approaches. Additionally, we present methodologies for
calibrating the rotation axis and quantifying misalignment
between the target point and the rotation axis, pivotal for
establishing an accurate kinematic model. Subsequently, we
propose a novel Kalman filter-based iterative learning control
method that capitalizes on information derived from previous
operational trials to enhance response in subsequent iterations,
thereby achieving high-precision in-situ rotation. Experimental
validation, including comparisons with PID control and model
predictive control, demonstrates the strategy's stability,
reliability, and superiority. Our contribution lies in three aspects:
Firstly, the proposed method mitigates the need for stringent
robotic configuration on the rotation axis and avoids
monopolization of linear DOFs. Secondly, the innovative
application of the image Jacobian matrix technique in the
calibration of kinematic model parameters is demonstrated.
Thirdly, the effective utilization of repetitiveness in rotation
manipulation represents a novel aspect in the control of
nanorobots.

Index Terms—Off-axis rotation, In-situ nanomanipulation,
Nanorobotics, SEM, Iterative learning control

I. INTRODUCTION

OBOTIC nanomanipulation technique inside scanning
electron microscope (SEM) holds immense promise in
field of material science[1-6], cell biology [8-10], and
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Fig. 1. Position shift after rotation of 50°caused by misalignment, where the
magnification is 100, and the scale bar is 100 pm. (a) SEM image of
cantilever before rotation; (b) SEM image of cantilever after rotation of 50<

semiconductor[11], as it is capable of providing precise spatial
displacement via linear translation and facilitating accurate
adjustment in object posture and multidirectional observation
via rotary manipulation. These capabilities have proven highly
beneficial for various studies, including, nanoscale device
fabrication [71, cell manipulation [8-10] and
nanoelectromechanical systems (NEMS) manufacturing [11],
nanomaterial defect detection [12], 3-D nanoscale observation
[13-14] and nanomaterial twisting characterization [15-16].
Compared with linear motion, rotary motion presents a
multitude of challenges due to the inherent characteristic
wherein the end-effector consistently maintains a spatial
distance from the rotation axis. This spatial relationship results
in significant mechanical misalignment at the microscale, even
when the rotation angle is small. Such misalignment becomes
problematic ~ when  conducting  sustained  rotational
manipulation, as it will cause the end effector to move out of
the field of view (FoV) or depth of focus. As depicted in Fig.
1, a substantial position shift on the order of hundreds micron
arises during rotation. This displacement necessitates
compensation. Such compensation is nontrivial while SEM
provides merely 2D images and thereby lacks of depth
information which is crucial for compensation in rotary
manipulation to maintain within DoF. The depth information
on optical axis can be estimated via depth from focus [17-18].
However, in fast scanning mode, SEM images manifest
substantial noise, potentially exerting adverse effects on
estimations. Furthermore, the persistent variations in the
posture of the end effector during rotation, particularly at
commonly employed nanomanipulation magnifications (e.g.,
1000x), result in the mismatch of the edge information
depicted in the mapped image. This renders conventional
sharpness evaluation metrics unreliable, given the dynamic
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nature of edge features. Consequently, these variations pose
challenges to the accuracy of depth estimation. Hence, relying
on focal depth for estimating positions along the optical axis is
not feasible due to its inherent coarseness and lack of
practicality.

Significant efforts have been devoted to addressing this
depth estimation challenge. One intuitive solution involves the
assembly of multiple lenses in a microscope with subsequent
center alignment. For instance, mounting optical microscope
(OM) on the side of SEM chamber can offer an additional side
view, facilitating the depth estimation of end-effector inside
SEM, and thereby enabling nanomanipulation [19]. However,
the installation of an OM significantly limits the chamber
space, and potentially impact the quality of SEM imaging.
Alternatively, centering end-effector has emerged as a recent
technique to align samples with the rotation axis, thereby
minimizing significant displacements and circumvent the
necessity of the depth estimation. For instance, the static
triple-image alignment (T1A) methods developed by Haojian
et al [20-21] and their extended dynamic version [22], in
which two linear nano-positioners are orthogonally mounted
on the rotary nano-positioner. By assuming that the rotation
axis is orthogonal to the two linear axes, these alignment
methods simplify the modeling process but concurrently
introduce inherent model errors. Moreover, the alignment
method requires the utilization of two linear nano-positioners
exclusively designed for centering, thereby impeding the
execution of intricate rotary manipulations, such as the tension
test of micro-materials. In summary, neither incorporating
supplementary vision hardware within the chamber nor
affixing extra linear nano-positioners onto a rotary nano-
positioner proves to be a viable solution for addressing the
challenges of in-situ nanomanipulation. This underscores the
need for online compensation strategies to address off-axis
rotational manipulation under SEM.

To address this objective, we reframe the issue from a
control standpoint [23], specifically modeling online
compensation strategies for off-axis rotational manipulation as
a trajectory tracking control problem. In order to achieve high-
precision trajectory tracking, the control strategy must
effectively handle model uncertainties and external
disturbances [24]. Consequently, conventional solutions
prevalent in the field of nanoscale positioning control, such as
sliding mode control [25, 28], neural networks [26], and
various robust adaptive control methods [27, 30], cannot be
directly applied to the off-axis rotation problem due to their
restrictive assumptions and suboptimal performance. For
example, the precision of model information required in [28]
and the technique developed in [30] are inadequate for
addressing substantial external disturbances. Conversely, we
observe that numerous nanoscale positioning applications,
including the in-situ manipulation under consideration, entail
repetitive desired tracking trajectories [23, 29]. In such
scenarios, lterative Learning Control (ILC) emerges as a
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Fig. 2. Basic configuration of the nanorobotic manipulation system. A
rotational nanorobotic system unit contains three translational DOFs and one
rotary DOF.

promising solution [31].

In this paper, we present a nanomanipulation system
featuring a rotary nano-positioner mounted at the end joint, as
illustrated in Fig. 2. Importantly, our approach doesn’t
monopolize the linear DoFs, thereby reducing configuration
cost, and it does not demand a strict adherence to a specific
system configuration for the rotation axis. We also provide
methods for calibrating the rotation axis and measuring
misalignment between the target point and the rotation axis,
which are essential for establishing appropriate state space
model. Based on the identified model, we propose a Kalman-
filter-based iterative learning control method to desired
trajectory tracking, i.e. in-situ rotation. By exploiting the
repeatability of the off-axis in-situ rotation, ILC leverages
information from previous operational trials to enhance the
response in the next iteration. Consequently, system
performance can be improved through iterations [32]. To
enable the system to track the desired trajectory faster and
more accurately, this paper proposes a high-order iterative
learning control approach [33] which is the first time utilized
in nanorobots control. In the in-situ rotating experiment, the
results demonstrate a significant reduction in the average
position shift of the target object, decreasing from 417.058 um
to 1.374 um, reflecting a remarkable improvement of 99.671%
under the proposed control method.
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Fig. 3. (a) Observation of cantilever in side view. (b) Observation of cantilever in front view. (c) Displacement on x- and z-axis. (d) Displacement on x- and y-axis.
(e) Displacement in 3D motion space {M}. (f) Displacement on u-axis for each step in different revolutions. (g) Displacement on v-axis for each step in different
revolutions. (h) Histogram for the absolute error on displacement in each step and a fitted gaussian curve. In each figure, lines in different colors represent

different rotations.

The rest of this paper is organized as follows. The
nanorobotic  manipulation  system  configuration and
displacement investigation is first discussed in Section II.
Afterward, in Section Ill, the kinematics of the nanorobotic
system and the calibration method for misalignment and
rotation axis is clarified. Then, in Section 1V, the designed
controller based on iterative learning framework is proposed,
including Kalman filtering-based observer and stability
analysis. The reliability and availability of the proposed
approach is validated by well-designed experiments and is
compared with the state-of-the-art methods. Finally, this
article makes the conclusion in Section VI.

Il. ROTATIONAL NANOROBOTIC MANIPULATION SYSTEM
CONFIGURATION

A. Rotational Nanorobotic Manipulation System

Configuration of the proposed nanorobotic manipulation
system is illustrated in Fig. 2, which consists of an SEM
camera and four nanopositioners that provide three
translational DoFs and one rotary DoF. Within the vacuum
chamber of SEM, the three linear nanopositioners are
orthogonally mounted, and one rotary nanopositioner is
utilized at the end of the nanorobotic manipulation arm. The
translational nano-positioner provides a precision of 1 nm,
while the rotary nano-positioner achieves a high angle
precision of up to 1< offering highly reliable feedback for
control movements. A top-view camera is employed to capture
2D images of the workspace.

Fig. 2 also portrays the establishment of three coordinate
systems for the nanorobotic manipulation system. The 3D
motion space {M} is defined on the base of robotics system,

with x-, y-, z-axes aligned with the orientations of three
translational nanopositioners. The image space {C} is
established on the imaging plane of SEM camera, where u-
and v-axes represent two axes of SEM image and w-axis
represents the optical axis, which is orthogonal to u-, v-axes.
The last coordinate system {C'}, serves as an auxiliary
uniform coordinate system introduced for the convenience of
the rotational axis calibration. The orientation of the axes of
{C"} is chosen to be same as that of {C} while the scale in
{C"} is set to be the same as in {M}. In addition to the
coordinate systems in Fig. 2, the coordinate system {E} is
designed for modeling simplification and will be introduced in
the Section I11. A.

The manipulation system incorporates one camera, that
transforms the incremental translational motion of target
object from the 3D Cartesian space {M} into its representation
in the image space {C}. To obtain an accurate motion model
of the observed object, pre-calibration of the parameters of the
vision system, specifically the image Jacobian matrix Jc, is
necessary. For magnifications exceeding 500, the image
projection exhibits affine transformation characteristics due to
the limited depth of focus. Consequently, at a certain
magnification, the image Jacobian matrix remains constant in
SEM images, allowing for pre-calibration.

It is worth noting that the rotation axis is not considered as
the y-axis in {M}, despite its close proximity. To facilitate the
calibration of the rotational axis, a normalized transformation
matrix Jc™* is employed to convert the motion space {M} into
the system {C'}. The specific orientation vectors are
calibrated in section Ill. C to ensure the accuracy of the
system model.
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B. Displacement During Robot Rotation

A comprehensive understanding of the displacement of the
observed object during robot rotation is essential to enhance
effective compensation for in-situ nanomanipulation under
SEM. First, under SEM, we obtain the trajectories of
cantilever mounted on the rotary nano-positioner from two
different angles of view, as depicted by Fig. 3 (a)-(d). Then,
the complete 3D trajectory of cantilever in {M} coordinates,
illustrated in Fig. 3 (e), can be calculated as follows:

Xr (t) =X (t _1) + (‘J SFT‘]SF )_I‘JSFT (yT (t) Y (t _1)) 1)

where xt represents the three-dimensional spatial position in
{M} coordinates, JsF is the Jacobian matrix that maps from
the image systems in the side view and front view to the
spatial motion space, and yr is a 4 x 1 column vector formed
by the position on two image planes.

As illustrated in Fig. 3 (c)-(d), the displacement of
cantilever during rotation can be simplified as an orbit around
a rotation axis, although the orbit was not perfect circle and
polluted by subtle yet nanoscale biased noise. The noise
primarily ~originates from the previously mentioned
mechanical misalignment, and its impact is nonnegligible
when precise off-axis in-situ rotation is required. For
modelling simplicity, the trajectory is treated as combination
of a circle and a perturbation noise.

To achieve a more precise calibration of the cantilever's
trajectory, it is imperative to employ high magnification to
minimize measurement noise. However, the presence of
mechanical misalignment poses a challenge, as rotation
manipulation under high magnification may lead to the
cantilever exceeding the limited field of view. Consequently, a
delicate balance between the field of view and magnification
is crucial, and pre-synthesis compensation will aid in keeping
the cantilever within the field of view. The calibrated 3D
trajectory in {M} serves as a valuable reference for
implementing such compensation. Nevertheless, achieving
high-precision in-situ rotation through compensation is
limited, as the nanometer-scale displacement of the cantilever
varies slightly in different rounds of rotation. The
inconsistency in the observed trajectories arises from the
presence of additional biased random noise in each rotation
control step, caused by mechanical and measurement
inaccuracy. The comparison results of multiple rotations are
depicted in Fig. 3 (f)—(g), where differently colored curves
represent displacement along the u and v-axes in different
rounds of rotation. The distribution of the random noise,
illustrated in Fig. 3 (h), exhibits characteristics of a Gaussian
distribution with a mean absolute error approximately equal to
4.5070 pixels, equivalent to about 900 nm on average, and a
standard deviation of 3.7930 pixels. The additional random
noise in each step is modeled as Gaussian noise, and thus, the
Kalman filter is implemented as the observer of the 3D
trajectory of the cantilever. Further details will be provided in
Section IV. B.
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Fig. 4. (a) Diagram of specific nanorobotic configuration. (b) Manifested
illustration of the setting near cantilever.

I1l. MODELING AND CALIBRATION

We begin by the kinematics of the nanorobotic
manipulation system, followed by the calibration of
misalignment and rotation axis.

A. Kinematics of the Nanorobotic Manipulation System

As shown in Fig. 4, a specific nanorobotic configuration is
established, and the coordinate system {E} is situated on the
initial rotation axis. This implies that as the linear nanorobot
moves, the origin of {E} remains fixed in {M}. The
orientation vectors in {E} are aligned with those in {M}. The
introduction of coordinate system {E} eliminates the potential
spatial offsets, which is a vector pointing from the origin of
{E} to the tracked feature point, such as the cantilever tip,
indicated by the red dot in the Fig. 4 (b).

In the coordinate {E}, disregarding the additional random
noise discussed in Section Il. B, the position of the tracked

feature point, manipulated by nanopositioners, can be
formulated as:
P, AX; u,
X=|P, [=R(f,0)| Ay, |+|u, 2)
Pz AZf uz
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where X = [Py, Py, P;]" is the position of feature point on the
end-effector, [Ax:, Ays, Az]" denotes the primary mechanical
misalignment which is identical for each revolution, [uy, Uy,
u;]" is the linear motion of three translational nanopositioners,
and R(f, ) is the standard rotation matrix around the rotation
axis f about rotation angle 6, which can be expressed as:

f, fvo+co
R(f,0)=| f fvo+ f,s0
f f,vo—f so

fy f,ve— f,s6
fy fyv0+ s
fy fvé+ f,s6

f,fvo+f s0
f, fv0— 1,50 |(3)
f,f,v0+s6

where ¢é and sé are the cosine and sine of the rotation angle 6,
respectively; vO denotes vers6, defined as (1 - cosé); the vector
[f«, fy, f]" corresponds to the normalized orientation vector of
the rotation axis f in the motion space {M}, which will be
measured in section 111. C.

Next, take the control steps and the additional random noise
into account, the kinematic model of the nanorobotic
manipulation system (i.e. the transformation governing
equation of the position of feature point form the instant t - 11"
step to ti" step) is expressed as follows:

t-1
X, =R(f,A0)X,, +u +(1 -R(f,A0)D u, +35,
n=0
X =[P P P u=uf uf o]
where, at t" time step, the state Xi control input u; and
disturbance input J: separately represent the spatial position of
the observed object (cantilever), the translation motion of the
nano-positioners, and the influence brought by the additional
random noise. A@ is the rotation angle for each step which is
constant during in-situ rotating control. Note that R(f, A9) is
denoted as R in the following expressions for simplicity.

This kinematic model of the nanomanipulation system
illustrates the mathematical basis for compensating the
displacement of the feature point by the nanorobot during the
rotation process. With reference to Figure 3, it is evident that
the constant wvector [Ax;, Ayr, Az]" representing the
misalignment between the target point and the rotation axis as
well as the vector [fy, f,, f,]" obtained by the calibration of the
rotation axis are crucial for the correctness of the kinematic
model. In this context, this misalignment corresponds to the
position of the feature point in {E}, since {E} is the
coordinate system established on the rotation axis, and its
directional vectors align with those in {M}. Subsequently, we
will pre-calibrate the misalignment and rotation axis using the
methods described in Sections Il1. B and Il. C.

B. Alignment Error Estimation

In contrast to scenarios involving macroscale manipulation,
the determination of absolute position becomes elusive in the
microscale. In nanorobotic manipulation within SEM, only 2D
SEM images are available, lacking depth information along
the optic axis. Consequently, the measurement of
misalignment poses a significant challenge. To address this
issue, a systematic procedure for estimating misalignment has

Befordrotation

60 “rotation

Thfee points at the same depth

Fig. 5. An example of finding three points at the same depth, and the rotation
axis is estimated with point feature matching between before and after certain
rotation.

been developed as follows.

First, multiple rotation trials are conducted to generate SEM
images with varying rotary increments. The image Jacobian
matrix Jc, as defined in [34], is introduced here for projecting
from 3D motion space to the u-v image plane in {C}. The
image Jacobian matrix can be pre-calibrated to establish a
correspondence between three motion axes and two image
plane axes. At high magnification, the pre-calibrated Jc can be
considered accurate and time-invariant. The feature increment
is then calibrated for each rotation operation through:

AX,

3 (R-1)| y, =]
o (R-1)/ 4y, {AV} (5)
Az,

where [Ax;, Ayr, Az]" is the to-be-calculated misalignment
about the rotation axis f, I is an identity matrix, and [Au, Av]"
is the feature incremental motion in image space. R is the
rotation matrix about A9 over the rotation axis f.

With several rotation trials of the same angle, the
expressions can be combined by:

Je Ax Auv,
J.R " | Auy,
(R-D|ay, |= ©)
Az
J.RY? " Auy,

where N is the number of rotary motion trials.

Secondly, given that R, a rotation matrix about rotary angle
A@ around rotation axis f, is an orthogonal matrix processing
an eigenvalue of 1, (R - I) features an eigenvalue of zero,
indicating its singular nature. Therefore, the misalignment
vector [Ax;, Ayr, Az]" cannot be calculated directly using the
matrix inverse. But the matrix preceding (R - 1) is of full rank,
then rotational motion of the feature point in motion space {M}
can be estimated via:

-1

Ax Jec Auv,
f
J:.R Auv
(R-1)| Ay, |=| ¢ 2 ™
A7
IR | Ay,

The general solution of the misalignment is shown by:
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AX, AX, f,
Ay, |=| 0 |+m|f,
Az, Az, f,
Jo T Auy, ®)
AX, a1 JeR Auv,
J.RY| | Auy,

where the operation denoted by [-]2» involves removing both
the middle column and the middle row from the original 3>3
matrix, resulting in the formation of a new 2>2 matrix. m
represents an arbitrary constant, signifying that the general
solution lies along a line parallel to the rotation axis.

Finally, during rotation, the movement of the feature point
in 3D motion space can be calculated as:

AX AX, AX, f,
Ay [=(R-D|Ay; |[=(R=-1)| 0 |[+m(R-1)| f,
Az Az, Az, f,
- 9)
AX,
=(R-1)| 0
| Az,

The motion of the feature point is calculated with the
misalignment [AX;, Ay;, Az]", which is equal to the motion
estimation with [AXo, 0, Azg]". Therefore, [AX:, Ayr, Azf]" can
be estimated with [AXo, 0, Azo]".

C. Rotation Axis Estimation

When our nanorobotic manipulation system rotates the end
effector, noticeable displacements along the u-axis in SEM
images within the image space {C} occur. These
displacements result from aforementioned mechanical
misalignment, leading to inaccuracies in our kinematic model
and consequently introducing trajectory errors in the in-situ
rotational motion. Therefore, to achieve high-precision off-
axis rotational motion, we cannot crudely assume that the
direction of the rotation axis coincides with the y-axis of the
motion space {M}. A precise pre-calibration of the rotation
axis is required. In this paper, the rotation axis f is
characterized by its normalized orientation vector f in a
specific coordinate system, for instance, fm is a normalized
orientation vector of the rotation axis f in {M}.

First, we recall the auxiliary coordinates {C'} introduced in
Section Il. A. It serves as an intermediary coordinate system
between the motion space {M} and the image space {C},
maintaining orthogonally to meet the assumption in (3) while
containing orientation information from {C} for scaling. To
transfer the motion in space {M} to the coordinate system {C'}
and extending the optical axis into the image space, we
introduce the transformation matrix Jc* and the transformation
matrix Jc” which is extended from the image Jacobian matrix
Jc. The matrix Jc” is an orthogonal transformation matrix

with the first row vector and the third row vector orientations
similar to the image Jacobian matrix Jc and the second row
vector as the cross product of the first and third row vectors.
The matrix Jc” is an orthogonal transformation matrix with the
first row vector and the second row vector same as the image
Jacobian matrix Jc and the third row vector as the cross
product of the first and second row vectors. The matrix Jc*
and the matrix Jc* can be expressed as follows

norm(J,) J;
J. =|norm(J3,)xnorm(J,) |,J. =3I, |» I,=J,xJ, (10)
norm(J,) J,

where Ji1 and J» are respectively the first and second row
vector of image Jacobian matrix Jc, norm(-) represents
normalization. Consequently, we have the rotation matrix for
the rotary angle 8 around the rotation axis f in {M} can be
computed based on fcr as follows.

R(f,.0) =3 R, 0)(3:) = (3. SIR@OI.'S)
(11)

where S™ is the rotation matrix which can transform {C"} to a
new auxiliary coordinate system, aligning its w'-axis with the
rotation axis f.

Next, we need to calibrate the direction of the rotation axis
in {C"}. To this end, it is necessary to identify at least three
feature points along the optical axis within the SEM images.
As illustrated in Fig. 5, two eigenvectors formed by these
three points, with zero components along the optical axis in
the image space {C}. As a rotation is executed, feature vectors
can be tracked to observe the changes induced by the rotation
operation. Taking n tracked feature vectors, the vectors in {C"}
can be calculated from vectors in {C} as:

Ay Ay,
Av, | =373 Ay, (12)
0 c' 0 C

where [Aui, Avi]" is the it vector of feature in {C"} or {C}.

In terms of a vector [Au, Av, 0]" in {C}, the component of
the corresponding vector on the w’axis in {C'} is zero.
Therefore, the feature vectors after rotation can be calculated
as follows.

Au Au Au'
R(f..,0)| Av :R(fc.,é’)JC.*(JC*)’1 Av| =l Av'| (13)
0 c 0 c AW' .

Focused on the upper two rows, the equation can be

expressed as following.
f,'f 'vo—f,'s6 '
Vi o 09
f,"f,'vo+co | Av|. [Av'].

Following several calibration trials, fcr = [f¢, f,/, f,']™ can be
determined as follows.

f, ' f,'vo+co
f'f,'vo+f,'s0
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Fig. 6. Diagram of the proposed iterative learning control for in-situ rotating with Kalman filtering-based observer. The control input combines the
previous input series and the high-order feedback regulation through Kalman filter-based observer and last iteration.
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I I
L’ll r12:|:(xfof)1xfTYf (15)
21 12
Au, ... Au, Au' ... Au’
Xf = va = . .
Av, ..o AV Av," o AT

where n is the number of axis calibration trials. It’s worth
noting that the positiveness and negativeness of fy', f," can be
observed and judged from (rz1 + ri2).
Final, the rotation axis in {M}, denoted as fm, can be
calculated using the following equation.
fu= (‘]c'*yl fe. (16)
And the rotation matrix about rotation angle 8 over f in {M}
can be calculated referring to (16) by known [f, f,, f,]" and
rotation angle 6.

IV. HIGH-ORDER ITERATIVE LEARNING CONTROL WITH
KALMAN FILTERING BASED OBSERVER

Based on the kinematic model established earlier, achieving
high-precision off-axis in-situ rotation still necessitates an
efficient real-time compensation algorithm. In this section, we
first introduce an iterative learning framework via full-state
feedback and then elaborate on how full-state estimation is
obtained through Kalman filtering. Finally, the paper briefly
analyzes the stability of the overall system under the proposed
control strategy which theoretically ensures the effectiveness
of the proposed compensation algorithm for achieving high-
precision off-axis in-situ rotation.

A. Iterative Learning Control (ILC)

Leveraging the repeatability of the rotational manipulation,
the idea of iterative learning is employed to gradually reduce
the offset between trajectory of the observed object (cantilever)
and the desired position after each round of rotation, then
ultimately achieving high-precision performance.

In virtue of the dynamic model (4), we propose the
following ILC strategy.

u(t, k +1) = u(t, k) + K, -w(t, k +1) (17)

where u(t, k) represents the compensation input series at the t"
step in the k" iteration and u(t+1, k) the input signal at the (t +
1) step in the k™ iteration. Ko is the learning rate parameter.
w(t,k) is a proper defined full-state error signal reflecting the
displacement of the observed object (cantilever) is at the ti"
step in the k™ iteration, which is provided by the Kalman filter
and discussed in the forthcoming subsections.

Unlike conventional iterative learning control [32], here, due
to limited field of view (FoV) at high magnification under
SEM, an arbitrary input for the first iteration cannot ensure the
target object (cantilever) remain in SEM image. Thus, the
initial input series are needed to be set properly. With the aid
of calibration in Section Ill. B, the initial input series can be
calculated as

ut,) =(1 -R(f,t-A0))- X, (18)
where A is the control step, t - A@ is the rotation angle at tt"
step and Xo is set to be the pre-calibrated misalignment. This
initial input compensation significantly constrains the
displacement of the observed object.

B. Kalman Filter-based Observer

To facilitate the implementation of the proposed lterative
Learning Control (ILC) as outlined in equation (18), a crucial
component is the full-state error signal w(t, k), which is
contingent upon the precise spatial position of the observed
object. Obtaining such a position is inherently challenging due
to the limitations of SEM vision, which provides only 2D
images, thus lacking depth information. Fortunately, as
elucidated in Section Il. B, it is observed that the trajectory of
the observed object, specifically the cantilever, can be
conceptualized as a composite of a circular path and subtle
random perturbations, approximated as Gaussian noise.
Consequently, the Kalman filter offers an effective and
concise methodology for estimating the spatial position state
by iteratively amalgamating predictions from the model and
observations from SEM. The employed Kalman filter is
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delineated as follows:

t-1
oredictor X; =AX_, +Bu, + EHZ:; u, (19)

P =AP_ A" +Q"

observation Y, =CX, (20)
and
Kt = Pt-CT (CPt-CT + R*)il
correctory X, = X; + K, (Y, -CX;) (21)
t T t t\t t

P=(I-KC)F

In (19)-(21), X, is the estimation of the spatial position of
the observed object at time step k - 1, utis the input signal at
the t" step, as defined above in (18). Considering the
kinematics model (4), we have parameter setting as

A=R(f,A0),B=1,,E=1-R(f,A0),C=J. (22)

The estimation X; of the spatial position of the observed

object at time step t purely based on the kinematics model.
The initial spatial position Xo is set to be the misalignment.

Yt is the position on the image plane where the origin of the
image plane is aligned to the origin of the coordinate system
{E}. Note, the observation Y: cannot be extracted directly
from SEM image since the origin of coordinate system {E} is
unknown on image plane. Through relative displacement by
the initial position, the observation Y: can be calculated from
SEM image as following

Y, =Y, — Yy +C- X, (23)
where y: is the position on image plane at t" step, yq is the
desired output as same as the initial position on image plane
and Xo is the initial spatial position.

Q" and R* are the covariance matrices associated with the
spatial position prediction and observation of the observed
object (cantilever). As discussed in the preceding Section Il. B,
an examination of prediction noise revealed its independence
along each axis. Consequently, Q" in (19) and R" in (21) can
be configured as diagonal matrices. Considering the detection
errors in the experiment, inherent image errors due to
resolution limitations, and for simplicity, the values on the
diagonal of Q" are uniformly set to 1000000, while the values
on the diagonal of R™ are all set to 1. This implies that
estimated position relies more on observation, which helps
avoid large variation between model and real trajectory. The
initial value of the state estimation covariance matrix Po is
also set as a scaled identity diagonal matrix, with the values on
the diagonal set to 100 for simplicity.

Finally, the estimation of the spatial position Xk of the
observed object (cantilever) is obtained by a weighted
combination of the prediction and observation. The estimation
of spatial position through Kalman filter then facilitates the
full-state feedback compensation.

C. High-order Feedback Control

As illustrated in Fig. 6, in each iteration (one revolution of
cantilever), within each iteration corresponding to one
revolution of the cantilever, the input series from the
preceding iteration is referenced through the high-order
feedback error signal w(t, k) as delineated below.

W(t, k) = X(t,K)— X, + X(t+Lk-1)— X (t,k-1)

differential displacement in the previous iteration

(24)

current displacement

The spatial states, such as X(t, k), are provided by the Kalman
filter-based observer. Due to space limitations, the
convergence of the observation error is not discussed here.
Note that, in contrast to the conventional iterative learning
control [32], here, w(t, k) not only concerns the displacement
in the last iteration, but also accounts for the differential
displacement on the current t step, which motivates the name
of ‘high-order feedback’. Note that in the first iteration, only
the displacement on the current t step is considered. With the
displacement signed as e(t, k), the expression of feedback term
can be simplified as follows.

w(t, k) =e(t,k) + Ae(t,k-1) (25)

In summary, we proposed a Kalman filter-based high order
ILC, where the iterative learning framework capitalizes on the
inherent repeatability in rotation, complemented by the
Kalman filtering-based observer, which facilitates state
estimation through the integration of prediction and
observation. This integration effectively minimizes disparities
between the model and the actual trajectory, concurrently
addressing random noise concerns. Within the context of high-
order feedback design, the inclusion of both these
displacements, encompassing their  proportional and
differential information from the preceding iteration during
rotary motion, contributes to swift convergence and
heightened precision within the designed controller. The
efficacy of the proposed control methodology will be
scrutinized, and comparative assessments will be conducted
with alternative methods in the forthcoming experiments
outlined in Section V.

D. Stability Analysis

To distinguish the estimation X: in (21) and the true state in
(4), in the following we rewrite the dynamic model (4)
transforming as follows:

X (t+1,k) = AX (t, k) + Bu(t,k) + Eiu(i, k) +o(t, k) 9)

Y(t+1k) =CX(t+1k)

where B is an identical matrix with appropriate dimensions.
And te{0,1,2,...,N}, ke{l,2,...,00} for some positive integer N.
The control objective is forcing X (t,k) — X, (t) at each time
instant. In this paper, we have x,(t) = x(0,2) .

For (26), it can be rewritten as
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X (t+1,K) = AX (t, k) + Bv(t, k) + 3(t,K)

(27)
Y (t+1,k) = CX (t +1,K)

where v(t,k)=u(t.k)+ EY " u(i.k).

For system (28), we assume the following assumption holds,
which is general in the ILC committee.

Assumption 1: There exists a unique bounded input sequence
vd(t) such that the system state X(t, k) follows Xa(t) with a
prescribed accuracy ¢ as follows:

vte[0,N],[X(t.k) - X, (t)|<e.

Assumption 2: The initial condition of (27) is known as
calibration, i.e. X(0, k) = Xa(0) for all ke{,2,...,00}.

Assumption 3: External disturbance 4(t, k) is nonrepetitive,
but the variations of 4(t, k) with respect to the iteration k are
bounded with a positive constant s, i.e.

otk +1)—a(t, k)| < 5,
The control law is given as

v(t, k +1) = v(t, k) + K,w(t, k +1)

(28)
etk +1) = X (t,k +1)— X, (t) + X (t+1,k) — X (t, k)

To facilitate subsequent analysis, we apply a time shift to
Xd(t), i.e. Xa(t) in (28) is replaced by Xq(t + 1). This operation
is reasonable, as Xq(t) exhibits a constant nature in this article.
Then, the control law (28) can be rewritten as

v(t, k) =v(t, k) + K, X (t, k)

_ _ (29)
V(t,k+1) =v(t,k)+ K, (X (t+1Lk)- X, (t+1)

Now, we can rewrite the system (27) and control law (29) as

X(t+1,k) = AX (t, k) + BV (t,k) + o(t, k)
y(t+1,k) =CX(t+1,k)
V(t,k+1) = V(t,k)+ Ky (X (t+LK) - X, (t+1))

(30)

where A= A+BK,.
Define the tracking error on iteration k as
e(t, k) = X(t, k) — X, (t)
In addition, we use z(t,k)=X(t+Lk) , then we have the
e,(t,k) = X(t+1,k) — X, (t+1), the control law thereby becomes
V(t,k+1) =V(t,k)+ K, (t,k) .

Let
[ X (LK) v(0,k)
240 *@9 ugy-| TE9
| X(N,K) V(N -1,k)
X @ o(0,k)
z, - Xd:(Z) F)= 5(1;k)
[ X4(N) o(N -1k)

Based on the lifted-vector-matrix technique above, system
(30) can be reformulated as an input-output transmission form
described by

Z (k) = HU (K) + ¢F (k) (31)
Uk +1) =U (K) + K, E, (k) (32)
E,(k)=2(k)-Z, (33)

where we have

B 0 0 | 0 .. 0
b AB B . 4o A R
: oo : ) 0
AV'B AB B AVt o A

In this article, the following lemmas are introduced before
the main result is presented.
Lemma 1.1: [1] For a matrix P e R™", there must exist a

matrix norm | - | such that
||P|| <p(P)+x
where Vx>0, p(P) is the spectral radius of matrix P.

Proof: According to the Jordan decomposition theorem,
there exists an invertible matrix Q, such that

Aowy 0 00
0 4 y, =+ 0 0
Q'PQ=|-- .
0 0 o - ﬂ“n-1 Vi
o 0o o - 0 A

where Ai(i =1, 2, 3, ..., n) are the eigenvalues of matrix P and
wi=1lor0,j=1,2,...,n-1 Let D=diag(l, x, «5, ..., k"),

and one has
A xky, 0 - 0 0
0 4 «xvy, 0 0
D'Q'PQD ==
0 O 0 Ay KW,
0 O 0 0 A

Then, define the matrix norm

IP|= || D’lQ’lPQD"w (34)

One can get [D'Q'PQD| < max, (4| +x)=p(P)+x .

Lemma 1.2: [1] For a matrix P e R™", a vector X eR", and
an arbitrary matrix norm | - |, there exists a vector norm

| - | such that
[PX[. <[PlIX].
Proof: For any vector y =0eR", define the vector norm
X[ =[x

where || - | is the matrix norm in (36). Then, one have
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TABLE I. EXPERIMENTAL RESULTS ON OFF-AXIS ROTATING CONTROL METHODS

Round Average position Maximum position -
Step angle ) . Standard deviation
I?\lxg). Control method Magnification b ang No. shift shift
' AO(9 / Savg (NM) Smax (NM) SD (nm)
1 None / 1 / 417058 866532 311389
2 PID 1000 1 / 3462 24609 2926
3 MPC 1000 1 / 4466 41208 5545
1 2399 19204 2426
4 500 1
4 1924 11893 1691
1 1700 47620 2765
5 0.5
5 1441 11016 1336
1 2149 13002 1916
6 Ours 1000 1
4 1374 10050 1386
7 5 1 7466 22444 4904
4 3635 17418 2622
1 2236 12207 1943
8 2000 1
2 1921 15021 1818
HPX*:HPXXT SHPH'HXXTH:HPH'HX X Consider Lemma 1.1, we know, if the selection of Kg

From (34), we have
E,(k+1)=2Z(k+1)-2Z,
=HUk+)+gF(k+D)-2Z,
=HUK+D)+gF(k+D)+E,(k)-Z(k)
In view of (33), one can obtain that

E,(k+1) =H[U(k)+K,E,(k)]+¢F (k+1) + E, (k)

[HU (k) +¢F (k)]
= (1 + HK,)E, (k) + ¢5F (k)
= LE, (k) +¢5F (k)
where 6F(k)=F(k+1)-F(k), and
I +BK, 0 0
AB  1+BK, :
L= . .
: - : 0
A"'B AB | +BK,

From Assumption 3, there must exist positive constants 7,
satisfying the inequality
lgsF (. <7
Together with the fact that, for a lower triangular matrix
P <R™, we have |P*|<|P|". By using Lemma 1.2, we have

k .
€. (D). < el + X e
i=0
. LA™
I e oL+
-
Then, together with the fact that |E,(0)] is bounded, we
have
A . k+1 1
fim €, (k+3]. < fim L . O + =y

satisfies the condition 0< g = p(l + BK,)+x <1 for x > 0, then
we have |E,(k+1)|,<#./@-|L]) . Therefore, the tracking

error between X(t) and Xa(t) will converge to a neighborhood
of the origin, together with the Assumption 2.

Remark 1: From the analysis process, the convergence
performance of the algorithm we propose is only related to the
magnitude of external disturbances varying with iterations.
The smaller the magnitude, the higher the convergence
accuracy. This means that even if the in-situ control system is
subjected to significant external disturbances, as long as these
disturbances is repetitive with respect to the iteration number,
our algorithm can keep probe stationary in its initial position.

V. EXPERIMENT AND RESULTS

. : Linear
3 r—'_‘—iDOSitiO

Fig. 7. Experimental nano-manipulation platform equipped with ECSx3030,
ECR3030 nanopositioners (Attocube Systems AG), and JEOL JSM-

IT500HR/LA InTouchScope™ SEM. AFM cantilever is used as robot end-
effector for in-situ point rotating control validation.

This section validates, through experiments, the capability
of the proposed nanorobotic manipulation system, in
conjunction with the high-order iterative learning control
algorithm based on Kalman filtering, to achieve high-precision
off-axis in-situ rotation. Additionally, a comparative analysis
is conducted with PID controllers and model predictive
control (MPC) to underscore the superior performance of the
proposed method.
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Fig. 8. SEM images of a cantilever’s in-situ rotating experiment with rotation range of 360 “and rotation step size of 1< (a)  =0< (b) 0 =30< (c) # = 60< (d) 6
=90< (e) §=120< (f) 9 =150< (g) # =180< (h) 8 =210< (i) 6 = 240< (j) 0 = 270< (k) = 300< (I) 8 = 330< The magnification is 1000 and the length of scale

bar is 10 um. The AFM cantilver used here is NANOSENSORS ATEC-FM.

A. Experimental Setup

Fig. 7 displays the established nanorobotic manipulation
system. The scanning electron microscope used in this system
is JEOL JSM-IT500HR/LA, operating in high vacuum mode
to image samples by detecting secondary electrons, under 10
KV acceleration voltage, which captures 7 frames per second
(frame/s) with image size of 640 > 480. The cantilever
employed in this experiment was NANOSENSORS ATEC-
FM. The translational nanopositioners, which are orthogonally
mounted in this nanorobotic manipulation system, were
Attocube piezoelectric ECSx3030, representing Xx-, y-, z-axes.
The rotational nanopositioner is an Attocube piezoelectric
ECR3030, with the rotation axis situated close to y-axis in
{M}. The translational positioners offer repeatability precision
of 50 nm.

B. Evaluation Metric

To properly assess the performance of the rotary
manipulation, we utilize the positional shift of it step, denoted
as SFT(i), obtained from the SEM images and calculate the
average position shift SFTay, during the entire rotating process
as follows:

uP(i) utarget 1 T
SFT ()= 3™ Vo () |~ | Vigr | + ST = 22, SFT (D)
0 0

2

(35)

where Jc is the image Jacobian matrix at the current
magnification for transformation from 3D motion space {M}
to u-v image plane in {C}. The coordinates up(i) and vp(i)
represent the coordinates along the u-axis and v-axis,
respectively, of the point projected onto the image plane at the
i instant for a given feature point. Similarly, Utarget and Viarget
denote the coordinates along the u-axis and v-axis,
respectively, corresponding to the projection of the initial
values (initially positioned rotational target values) onto the
image plane.

In addition to the average position shift, we also define the
maximum position shift SFTnax, and the standard deviation of
position (SD) throughout the entire rotating process as below:

SFT, ., = @%{SFT(D} (36)
SD = Jni_l > (SFT(i)-SFT,,) (37)

The image Jacobian matrix is computed based on the
calibrated Jacobian matrix and the applied magnification [35].
Specifically, for the experiments conducted in this study at a
magnification of 1000, the image Jacobian matrix is
established as follows:

2.20e-4 5.07e-3 -6.25e-5
J. =| 511le-3 -8.66e—5 -5.00e—6 | pixel/nm
-3.08e-8 -3.18e-7 -2.59e-5

To calibrate the initial misalignment, we implement the
methodology detailed in Section I11.B through four movement
trials involving a rotation of 15< This process yields the initial
misalignment vector [Ax:, Ayr, Az]T = [396123, 0, 214680]"
nm. Subsequently, employing the approach outlined in Section
I11.C, we capture two images before and after a rotation angle
of 60°to calibrate the rotation axis. The outcome of this
calibration procedure estimates the rotation axis, denoted as
vector fwv, as [0.098, -0.9999, 0.0098]". Regarding observer,
the values on the diagonal of Q" are uniformly set to 1000000,
while the values on the diagonal of R are all set to 1.

C. Off-Axis In-situ Rotation

The primary objective of off-axis in-situ rotation is to
maintain the target point, situated at the tip of the AFM
cantilever, in-situ through rotational manipulation. The SEM
images in this experiment with tip rotation of 360<and step
size of 1°are shown in Fig. 8. The tip's position is monitored
through edge point detection using the Canny operator,
implemented with a strong threshold of 150 and a weak
threshold of 250. Initially, it is noted that the tip displays an
offset of about 451 pum from the rotation axis. This value is
considerably larger than the field of view at a magnification of,
for example, 1000, which is constrained to 128 um.
Additionally, the rotation axis is observed to closely align with
the y-axis in {M}, signifying that the offset is more
pronounced along the u-axis in the image space {C}.
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Fig. 9. Rotating experimental results at different magnifications and step sizes. (a)-(c) Real path of linear nano-positioners’ compensation, position error of point
of interest on image plane, and trend of average position error with increase of rounds under different step sizes. (d)-(f) Real path of linear nano-positioners,
position error on image plane, and trend of average position error with increase of rounds under different magnifications.

To validate the efficiency of our system under various
working  magnifications  while  considering  different
manipulation requirements, experiments employing the
proposed high-order ILC method were conducted at different
control step sizes and magnifications. Specifically, the SEM
magnification was set at 500, 1000, and 2000. Three distinct
step sizes, namely 0.5 1< and 5< were selected. But the
learning rate, denoted as Ko, was consistently set to diag{-0.9,
-0.9, -0.9} for all experiments.

The visual results of some representative experiments are
depicted in Fig. 9. Specifically, Fig. 9(a)-(c) illustrate the real
trajectory of the robot, the positioning error of the second tip,
and the average positional deviation across different iterations
in three off-axis in-situ rotation experiments with step sizes of
0.5< 1< and 5< and a magnification of 1000. It is evident that
larger step sizes result in greater positional errors with each
rotation, leading to increased oscillations in the trajectory.
Nevertheless, under all three step sizes, the algorithm
demonstrates convergence, and the proposed control method
performs well, particularly with step sizes of 0.5°and 1%
where the average positional deviation is notably low. With a
step size of 1< Fig 9(d)-(f) demonstrates the effect of
magnifications of 500, 1000, and 2000 on the performance of
rotational manipulation. As illustrated, a magnification of 500
introduces larger positional errors and higher oscillations.
However, a larger magnification does not necessarily always
yield better results, as evident in Fig. 9(f).

Table | enumerates further quantitative performance metrics
of in-situ rotation, encompassing average position shift,
maximum shift, and standard deviation. Fig. 9, in conjunction
with Table I, collectively corroborates the effectiveness of the
proposed off-axis in-situ rotation control method across

varying magnification factors and rotation step sizes,
maintaining the target point close to its original position.
Moreover, with an increasing number of iterative rotations, the
ILC converges, thus the target point progressively approaches
its original position in terms of the mean value. Overall, the
proposed method demonstrates rapid convergence and
stability in multiple iterations. It exhibits more precise
performance, particularly at smaller step sizes. The method
achieves optimal results in experiments conducted at a
magnification factor of 1000x and a step size of 1< In this
scenario, the average position shift decreases significantly,
from 417.058 um to 1.374 um, representing a remarkable
99.671% improvement in in-situ rotation accuracy.

D. Comparative Experiments

To further underscore the superiority of the proposed
method, based on the same modeling framework as outlined in
Section I1l. A, we conducted comparative analyses with
widely-recognized control methods, specifically PID control,
and Model Predictive Control (MPC). Experimental
parameters for the comparative methods align with those
specified in Section VV.C with magnification of 1000 and step
size of 1< For the PID controller, the proportional gain Kp is
set to 0.8, and the derivative gain Kp is set to 0.1. In the case
of the MPC method, both the state and terminal state
weighting matrices are configured as diag{2, 2, 2}, while the
input weighting matrix is empirically determined as diag{10,
10, 10}.

The comparative results of the three methods are illustrated
in Fig. 10 and in Table I. From Fig. 10(a), it is evident that the
proposed method yields a smoother trajectory and smaller
positional offsets. An empirical explanation to this fact is that
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Fig. 10. Comparative experiment results over control strategy with PID controller and MPC. (a) Real paths for linear nano-positioners’ compensation on tip
motion displacement with PID, MPC and the proposed method. (b) Comparison on position error of point of interest on image plane. (c) Comparative results of

mean value and standard deviation over position error.

when compared to the proposed method, both PID and MPC
are more prone to deviating from the limited field of view.
This tendency arises because PID is model-free, while MPC
relies on the accuracy of the model. The method proposed in
this study effectively balances these aspects, demonstrating a
commendable utilization of prior knowledge and successful
learning of properties related to the mechanical misalignment.
The average values and standard deviations of the proposed
method and the comparative methods are depicted in Fig. 10(c)
and Table 1, reflecting the superior precision of the proposed
method for the off-axis in-situ rotation under SEM.

E. Discussion

The superiority of the off-axis in-situ rotation control
method proposed in this paper is primarily manifested in the
following aspects: Firstly, unlike linear motion, the rotation of
a nanorobotics device generates significant spatial
misalignment  while undergoing precise attitude
transformations. The prevailing approach to address this
involves aligning the end effector to have the tracking point
centered around the axis of rotation. However, these methods
demand strict hardware configurations and the use of two
nanometer positioning devices. In this paper, we position a
rotary nano-positioner mounted at the end joint and employ
the proposed method to maintain the target point in-situ during
the off-axis rotational manipulation. Consequently, the
nanorobotic manipulation system imposes no restrictions on
the direction of the rotation axis, thereby relaxing system
configurations. Secondly, the proposed control method fully
leverages the repeatability of in-situ rotation, demonstrating
iterative learning capabilities and an asymptotically converged
precision in is-situ rotation. Specifically, our method restricts
the average displacement of the target point from the in-situ
position to 1.374 um. In comparison, without compensation,
the average displacement of the target point is 417.059 um.
Using a PID controller, only a reduction to 3.462 pum in
average position deviation is achievable, while employing the
MPC method results in a reduction to 4.466 um. Similarly, our
method outperforms others in terms of maximum position
deviation and standard deviation during in-situ rotation (see

Table I). Finally, our method exhibits excellent stability under
different step sizes and SEM magnification settings. Some
empirical insight on the relation between specific
configurations and the precision in in-situ rotation is given as
follows. In comparative rotation experiments with different
step sizes, the positional deviation at a 1°step size is less than
that at a 5°step size, attributed to the immediate feedback
provided by the smaller step size. However, due to
uncontrollable random mechanical noise, the performance at a
0.5°step size is slightly inferior to that at a 1°step size. In
rotation experiments at different magnification settings, the
positional error at a 500x magnification is less than that at a
1000x magnification. This difference can be attributed to the
higher resolution images provided by SEM at a 500x
magnification, with an approximately 200 nm/pixel resolution.
On the other hand, the performance at a magnification of
2000x is poorer than that at 1000x, as the Jacobian matrix at a
magnification of 2000x is estimated based on the Jacobian
matrix at a magnification of 1000x, leading to larger
observation errors in the Kalman filter.

VI. CONCLUSION

This paper establishes an advanced nanorobotic system and
its control methodology, achieving precise off-axis in-situ
rotation within a SEM with an average deviation of less than
1.374 um. This result represents a significant improvement of
99.671% compared to the uncompensated condition. Initially,
the nanorobotic manipulation system is constructed by
utilizing a nanometer rotatory positioner as an end joint.
Subsequently, we model the system and provide a calibration
method that does not require alignment with the central axis
and rotation axis. Calibration is accomplished with a single
view, consistent with the visual feedback settings during the
final rotation operation. Lastly, based on the established model,
we propose an iterative learning control method using the
Kalman filter and conduct the stability analysis and
convergence proof. Through carefully designed experiments,
we validate the stability, reliability, and performance of the
proposed technique. This off-axis rotation control strategy can
be seamlessly applied to other nanorobotic manipulation
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systems, relaxing the need for linear degrees of freedom
specifically dedicated to centering. This has implications for
various research applications, including defect detection in
nanomaterials, 3D nanoscale observation, and characterization
of nanomaterial distortions.
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