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Abstract—High-precision robotic rotational manipulation is 

crucial in fields such as nanomaterial defect detection, nanoscale 

3-D observation, and nanomaterial twisting characterization. 

Conventional solutions predominantly depend on the alignment 

of the tracked object with the rotation axis, necessitating 

stringent robotic configuration and monopolizing multiple linear 

degrees of freedom (DOFs). Consequently, this significantly 

impedes the dexterity of nano-manipulation. In this study, we 

introduce an innovative nanorobotic manipulation system that 

incorporates a rotary nano-positioner affixed to the end joint. 

This configuration facilitates high-precision off-axis in-situ 

rotation, alleviating the constraints associated with conventional 

approaches. Additionally, we present methodologies for 

calibrating the rotation axis and quantifying misalignment 

between the target point and the rotation axis, pivotal for 

establishing an accurate kinematic model. Subsequently, we 

propose a novel Kalman filter-based iterative learning control 

method that capitalizes on information derived from previous 

operational trials to enhance response in subsequent iterations, 

thereby achieving high-precision in-situ rotation. Experimental 

validation, including comparisons with PID control and model 

predictive control, demonstrates the strategy's stability, 

reliability, and superiority. Our contribution lies in three aspects: 

Firstly, the proposed method mitigates the need for stringent 

robotic configuration on the rotation axis and avoids 

monopolization of linear DOFs. Secondly, the innovative 

application of the image Jacobian matrix technique in the 

calibration of kinematic model parameters is demonstrated. 

Thirdly, the effective utilization of repetitiveness in rotation 

manipulation represents a novel aspect in the control of 

nanorobots. 

 
Index Terms—Off-axis rotation, In-situ nanomanipulation, 

Nanorobotics, SEM, Iterative learning control 

 

I. INTRODUCTION 

OBOTIC nanomanipulation technique inside scanning 

electron microscope (SEM) holds immense promise in 

field of material science[1-6], cell biology [8-10], and 
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semiconductor[11], as it is capable of providing precise spatial 

displacement via linear translation and facilitating accurate 

adjustment in object posture and multidirectional observation 

via rotary manipulation. These capabilities have proven highly 

beneficial for various studies, including, nanoscale device 

fabrication [7], cell manipulation [8-10] and 

nanoelectromechanical systems (NEMS) manufacturing [11], 

nanomaterial defect detection [12], 3-D nanoscale observation 

[13-14] and nanomaterial twisting characterization [15-16]. 

Compared with linear motion, rotary motion presents a 

multitude of challenges due to the inherent characteristic 

wherein the end-effector consistently maintains a spatial 

distance from the rotation axis. This spatial relationship results 

in significant mechanical misalignment at the microscale, even 

when the rotation angle is small. Such misalignment becomes 

problematic when conducting sustained rotational 

manipulation, as it will cause the end effector to move out of 

the field of view (FoV) or depth of focus. As depicted in Fig. 

1, a substantial position shift on the order of hundreds micron 

arises during rotation. This displacement necessitates 

compensation. Such compensation is nontrivial while SEM 

provides merely 2D images and thereby lacks of depth 

information which is crucial for compensation in rotary 

manipulation to maintain within DoF. The depth information 

on optical axis can be estimated via depth from focus [17-18]. 

However, in fast scanning mode, SEM images manifest 

substantial noise, potentially exerting adverse effects on 

estimations. Furthermore, the persistent variations in the 

posture of the end effector during rotation, particularly at 

commonly employed nanomanipulation magnifications (e.g., 

1000x), result in the mismatch of the edge information 

depicted in the mapped image. This renders conventional 

sharpness evaluation metrics unreliable, given the dynamic 

R 

Fig. 1. Position shift after rotation of 50° caused by misalignment, where the 

magnification is 100, and the scale bar is 100 μm. (a) SEM image of 

cantilever before rotation; (b) SEM image of cantilever after rotation of 50°. 

(a) (b) 
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nature of edge features. Consequently, these variations pose 

challenges to the accuracy of depth estimation. Hence, relying 

on focal depth for estimating positions along the optical axis is 

not feasible due to its inherent coarseness and lack of 

practicality. 

Significant efforts have been devoted to addressing this 

depth estimation challenge. One intuitive solution involves the 

assembly of multiple lenses in a microscope with subsequent 

center alignment. For instance, mounting optical microscope 

(OM) on the side of SEM chamber can offer an additional side 

view, facilitating the depth estimation of end-effector inside 

SEM, and thereby enabling nanomanipulation [19]. However, 

the installation of an OM significantly limits the chamber 

space, and potentially impact the quality of SEM imaging. 

Alternatively, centering end-effector has emerged as a recent 

technique to align samples with the rotation axis, thereby 

minimizing significant displacements and circumvent the 

necessity of the depth estimation. For instance, the static 

triple-image alignment (TIA) methods developed by Haojian 

et al [20-21] and their extended dynamic version [22], in 

which two linear nano-positioners are orthogonally mounted 

on the rotary nano-positioner. By assuming that the rotation 

axis is orthogonal to the two linear axes, these alignment 

methods simplify the modeling process but concurrently 

introduce inherent model errors. Moreover, the alignment 

method requires the utilization of two linear nano-positioners 

exclusively designed for centering, thereby impeding the 

execution of intricate rotary manipulations, such as the tension 

test of micro-materials. In summary, neither incorporating 

supplementary vision hardware within the chamber nor 

affixing extra linear nano-positioners onto a rotary nano-

positioner proves to be a viable solution for addressing the 

challenges of in-situ nanomanipulation. This underscores the 

need for online compensation strategies to address off-axis 

rotational manipulation under SEM.  

To address this objective, we reframe the issue from a 

control standpoint [23], specifically modeling online 

compensation strategies for off-axis rotational manipulation as 

a trajectory tracking control problem. In order to achieve high-

precision trajectory tracking, the control strategy must 

effectively handle model uncertainties and external 

disturbances [24]. Consequently, conventional solutions 

prevalent in the field of nanoscale positioning control, such as 

sliding mode control [25, 28], neural networks [26], and 

various robust adaptive control methods [27, 30], cannot be 

directly applied to the off-axis rotation problem due to their 

restrictive assumptions and suboptimal performance. For 

example, the precision of model information required in [28] 

and the technique developed in [30] are inadequate for 

addressing substantial external disturbances. Conversely, we 

observe that numerous nanoscale positioning applications, 

including the in-situ manipulation under consideration, entail 

repetitive desired tracking trajectories [23, 29]. In such 

scenarios, Iterative Learning Control (ILC) emerges as a 

promising solution [31]. 

In this paper, we present a nanomanipulation system 

featuring a rotary nano-positioner mounted at the end joint, as 

illustrated in Fig. 2. Importantly, our approach doesn’t 

monopolize the linear DoFs, thereby reducing configuration 

cost, and it does not demand a strict adherence to a specific 

system configuration for the rotation axis. We also provide 

methods for calibrating the rotation axis and measuring 

misalignment between the target point and the rotation axis, 

which are essential for establishing appropriate state space 

model. Based on the identified model, we propose a Kalman-

filter-based iterative learning control method to desired 

trajectory tracking, i.e. in-situ rotation. By exploiting the 

repeatability of the off-axis in-situ rotation, ILC leverages 

information from previous operational trials to enhance the 

response in the next iteration. Consequently, system 

performance can be improved through iterations [32]. To 

enable the system to track the desired trajectory faster and 

more accurately, this paper proposes a high-order iterative 

learning control approach [33] which is the first time utilized 

in nanorobots control. In the in-situ rotating experiment, the 

results demonstrate a significant reduction in the average 

position shift of the target object, decreasing from 417.058 μm 

to 1.374 μm, reflecting a remarkable improvement of 99.671% 

under the proposed control method. 
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Fig. 2. Basic configuration of the nanorobotic manipulation system. A 

rotational nanorobotic system unit contains three translational DOFs and one 
rotary DOF.  
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The rest of this paper is organized as follows. The 

nanorobotic manipulation system configuration and 

displacement investigation is first discussed in Section II. 

Afterward, in Section III, the kinematics of the nanorobotic 

system and the calibration method for misalignment and 

rotation axis is clarified. Then, in Section IV, the designed 

controller based on iterative learning framework is proposed, 

including Kalman filtering-based observer and stability 

analysis. The reliability and availability of the proposed 

approach is validated by well-designed experiments and is 

compared with the state-of-the-art methods. Finally, this 

article makes the conclusion in Section VI. 

II. ROTATIONAL NANOROBOTIC MANIPULATION SYSTEM 

CONFIGURATION 

A. Rotational Nanorobotic Manipulation System 

Configuration of the proposed nanorobotic manipulation 

system is illustrated in Fig. 2, which consists of an SEM 

camera and four nanopositioners that provide three 

translational DoFs and one rotary DoF. Within the vacuum 

chamber of SEM, the three linear nanopositioners are 

orthogonally mounted, and one rotary nanopositioner is 

utilized at the end of the nanorobotic manipulation arm. The 

translational nano-positioner provides a precision of 1 nm, 

while the rotary nano-positioner achieves a high angle 

precision of up to 1°, offering highly reliable feedback for 

control movements. A top-view camera is employed to capture 

2D images of the workspace.  

Fig. 2 also portrays the establishment of three coordinate 

systems for the nanorobotic manipulation system. The 3D 

motion space {M} is defined on the base of robotics system, 

with x-, y-, z-axes aligned with the orientations of three 

translational nanopositioners. The image space {C} is 

established on the imaging plane of SEM camera, where u- 

and v-axes represent two axes of SEM image and w-axis 

represents the optical axis, which is orthogonal to u-, v-axes. 

The last coordinate system {Cʹ}, serves as an auxiliary 

uniform coordinate system introduced for the convenience of 

the rotational axis calibration. The orientation of the axes of 

{Cʹ} is chosen to be same as that of {C} while the scale in 

{Cʹ} is set to be the same as in {M}. In addition to the 

coordinate systems in Fig. 2, the coordinate system {E} is 

designed for modeling simplification and will be introduced in 

the Section III. A.  

The manipulation system incorporates one camera, that 

transforms the incremental translational motion of target 

object from the 3D Cartesian space {M} into its representation 

in the image space {C}. To obtain an accurate motion model 

of the observed object, pre-calibration of the parameters of the 

vision system, specifically the image Jacobian matrix JC, is 

necessary. For magnifications exceeding 500, the image 

projection exhibits affine transformation characteristics due to 

the limited depth of focus. Consequently, at a certain 

magnification, the image Jacobian matrix remains constant in 

SEM images, allowing for pre-calibration. 

It is worth noting that the rotation axis is not considered as 

the y-axis in {M}, despite its close proximity. To facilitate the 

calibration of the rotational axis, a normalized transformation 

matrix JCʹ* is employed to convert the motion space {M} into 

the system {Cʹ}. The specific orientation vectors are 

calibrated in section III. C to ensure the accuracy of the 

system model. 
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Fig. 3. (a) Observation of cantilever in side view. (b) Observation of cantilever in front view. (c) Displacement on x- and z-axis. (d) Displacement on x- and y-axis. 

(e) Displacement in 3D motion space {M}. (f) Displacement on u-axis for each step in different revolutions. (g) Displacement on v-axis for each step in different 

revolutions. (h) Histogram for the absolute error on displacement in each step and a fitted gaussian curve. In each figure, lines in different colors represent 

different rotations. 
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Fig. 4. (a) Diagram of specific nanorobotic configuration. (b) Manifested 

illustration of the setting near cantilever. 
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B. Displacement During Robot Rotation 

A comprehensive understanding of the displacement of the 

observed object during robot rotation is essential to enhance 

effective compensation for in-situ nanomanipulation under 

SEM. First, under SEM, we obtain the trajectories of 

cantilever mounted on the rotary nano-positioner from two 

different angles of view, as depicted by Fig. 3 (a)–(d). Then, 

the complete 3D trajectory of cantilever in {M} coordinates, 

illustrated in Fig. 3 (e), can be calculated as follows: 

 
1( ) ( 1) ( ) ( ( ) ( 1))T Tt t t t−= − + − −

T T SF SF SF T T
x x J J J y y      (1) 

where xT represents the three-dimensional spatial position in 

{M} coordinates, JSF is the Jacobian matrix that maps from 

the image systems in the side view and front view to the 

spatial motion space, and yT is a 4 × 1 column vector formed 

by the position on two image planes. 

As illustrated in Fig. 3 (c)-(d), the displacement of 

cantilever during rotation can be simplified as an orbit around 

a rotation axis, although the orbit was not perfect circle and 

polluted by subtle yet nanoscale biased noise. The noise 

primarily originates from the previously mentioned 

mechanical misalignment, and its impact is nonnegligible 

when precise off-axis in-situ rotation is required. For 

modelling simplicity, the trajectory is treated as combination 

of a circle and a perturbation noise.  

To achieve a more precise calibration of the cantilever's 

trajectory, it is imperative to employ high magnification to 

minimize measurement noise. However, the presence of 

mechanical misalignment poses a challenge, as rotation 

manipulation under high magnification may lead to the 

cantilever exceeding the limited field of view. Consequently, a 

delicate balance between the field of view and magnification 

is crucial, and pre-synthesis compensation will aid in keeping 

the cantilever within the field of view. The calibrated 3D 

trajectory in {M} serves as a valuable reference for 

implementing such compensation. Nevertheless, achieving 

high-precision in-situ rotation through compensation is 

limited, as the nanometer-scale displacement of the cantilever 

varies slightly in different rounds of rotation. The 

inconsistency in the observed trajectories arises from the 

presence of additional biased random noise in each rotation 

control step, caused by mechanical and measurement 

inaccuracy. The comparison results of multiple rotations are 

depicted in Fig. 3 (f)–(g), where differently colored curves 

represent displacement along the u and v-axes in different 

rounds of rotation. The distribution of the random noise, 

illustrated in Fig. 3 (h), exhibits characteristics of a Gaussian 

distribution with a mean absolute error approximately equal to 

4.5070 pixels, equivalent to about 900 nm on average, and a 

standard deviation of 3.7930 pixels. The additional random 

noise in each step is modeled as Gaussian noise, and thus, the 

Kalman filter is implemented as the observer of the 3D 

trajectory of the cantilever. Further details will be provided in 

Section IV. B. 

III. MODELING AND CALIBRATION 

We begin by the kinematics of the nanorobotic 

manipulation system, followed by the calibration of 

misalignment and rotation axis. 

A. Kinematics of the Nanorobotic Manipulation System 

As shown in Fig. 4, a specific nanorobotic configuration is 

established, and the coordinate system {E} is situated on the 

initial rotation axis. This implies that as the linear nanorobot 

moves, the origin of {E} remains fixed in {M}. The 

orientation vectors in {E} are aligned with those in {M}. The 

introduction of coordinate system {E} eliminates the potential 

spatial offsets, which is a vector pointing from the origin of 

{E} to the tracked feature point, such as the cantilever tip, 

indicated by the red dot in the Fig. 4 (b). 

In the coordinate {E}, disregarding the additional random 

noise discussed in Section II. B, the position of the tracked 

feature point, manipulated by nanopositioners, can be 

formulated as: 

= ( , )

x f x

y f y

z f z

P x u

P f y u

P z u



    
    

=  +    
        

X R                      (2) 
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where X = [Px, Py, Pz]T is the position of feature point on the 

end-effector, [Δxf, Δyf, Δzf]T denotes the primary mechanical 

misalignment which is identical for each revolution, [ux, uy, 

uz]T is the linear motion of three translational nanopositioners, 

and R(f, θ) is the standard rotation matrix around the rotation 

axis f about rotation angle θ, which can be expressed as: 

( , )

x x y x z z x y

x y z y y z y x

x z y y z x z z

f f v c f f v f s f f v f s

f f f v f s f f v s f f v f s

f f v f s f f v f s f f v s

     

      

     

 + − +
 

= + + − 
 − + + 

R (3) 

where cθ and sθ are the cosine and sine of the rotation angle θ, 

respectively; vθ denotes versθ, defined as (1 - cosθ); the vector 

[fx, fy, fz]T corresponds to the normalized orientation vector of 

the rotation axis f in the motion space {M}, which will be 

measured in section III. C. 

Next, take the control steps and the additional random noise 

into account, the kinematic model of the nanorobotic 

manipulation system (i.e. the transformation governing 

equation of the position of feature point form the instant t - 1th 

step to tth step) is expressed as follows: 

1

1

0

( , ) ( ( , ))

,

t

n

T
t t t t t t

x y z x y z

f f

P P P u u u

 
−

−

=


=  + + −  +


    = =   

t t t n t

t t

X R X u I R u

X u


     (4) 

where, at tth time step, the state Xt, control input ut and 

disturbance input δt separately represent the spatial position of 

the observed object (cantilever), the translation motion of the 

nano-positioners, and the influence brought by the additional 

random noise. Δθ is the rotation angle for each step which is 

constant during in-situ rotating control. Note that R(f, Δθ) is 

denoted as R in the following expressions for simplicity. 

This kinematic model of the nanomanipulation system 

illustrates the mathematical basis for compensating the 

displacement of the feature point by the nanorobot during the 

rotation process. With reference to Figure 3, it is evident that 

the constant vector [Δxf, Δyf, Δzf]T representing the 

misalignment between the target point and the rotation axis as 

well as  the vector [fx, fy, fz]T obtained by the calibration of the 

rotation axis are crucial for the correctness of the kinematic 

model. In this context, this misalignment corresponds to the 

position of the feature point in {E}, since {E} is the 

coordinate system established on the rotation axis, and its 

directional vectors align with those in {M}. Subsequently, we 

will pre-calibrate the misalignment and rotation axis using the 

methods described in Sections III. B and III. C. 

B. Alignment Error Estimation 

In contrast to scenarios involving macroscale manipulation, 

the determination of absolute position becomes elusive in the 

microscale. In nanorobotic manipulation within SEM, only 2D 

SEM images are available, lacking depth information along 

the optic axis. Consequently, the measurement of 

misalignment poses a significant challenge. To address this 

issue, a systematic procedure for estimating misalignment has 

been developed as follows.  

First, multiple rotation trials are conducted to generate SEM 

images with varying rotary increments. The image Jacobian 

matrix JC, as defined in [34], is introduced here for projecting 

from 3D motion space to the u-v image plane in {C}. The 

image Jacobian matrix can be pre-calibrated to establish a 

correspondence between three motion axes and two image 

plane axes. At high magnification, the pre-calibrated JC can be 

considered accurate and time-invariant. The feature increment 

is then calibrated for each rotation operation through: 

( )-

f

f

f

x
u

y
v

z

 
  

 =       

C
J R I                           (5) 

where [Δxf, Δyf, Δzf]T is the to-be-calculated misalignment 

about the rotation axis f, I is an identity matrix, and [Δu, Δv]T 

is the feature incremental motion in image space. R is the 

rotation matrix about Δθ over the rotation axis f.  

With several rotation trials of the same angle, the 

expressions can be combined by: 

1

2

1

... ...

f

f

fN

N

uv
x

uv
y

z
uv−

   
    

    −  =    
         

（ ）

C

C

C

J

J R
R I

J R

                    (6) 

where N is the number of rotary motion trials.  

Secondly, given that R, a rotation matrix about rotary angle 

Δθ around rotation axis f, is an orthogonal matrix processing 

an eigenvalue of 1, (R - I) features an eigenvalue of zero, 

indicating its singular nature. Therefore, the misalignment 

vector [Δxf, Δyf, Δzf]T cannot be calculated directly using the 

matrix inverse. But the matrix preceding (R - I) is of full rank, 

then rotational motion of the feature point in motion space {M} 

can be estimated via: 

( )

1

1

2

1

-
... ...

f

f

f N

N

uv
x

uv
y

z
uv

−

−

   
     

      =     
          

C

C

C

J

J R
R I

J R

                     (7) 

The general solution of the misalignment is shown by: 

Before rotation 60° rotation 

Three points at the same depth 

Fig. 5. An example of finding three points at the same depth, and the rotation 

axis is estimated with point feature matching between before and after certain 

rotation. 
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−



−

      
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 = +      
           
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    

      = −          
    

C

C

C

J

J R
R I

J R

          (8) 

where the operation denoted by [-]2×2 involves removing both 

the middle column and the middle row from the original 3×3 

matrix, resulting in the formation of a new 2×2 matrix. m 

represents an arbitrary constant, signifying that the general 

solution lies along a line parallel to the rotation axis. 

Finally, during rotation, the movement of the feature point 

in 3D motion space can be calculated as: 

0

0

0

0

( ) ( ) 0 ( )

( ) 0

f x

f y

f z

x x x f

y y m f

z z z f

x

z

        
      

 = −  = − + −      
              

 
 

= −
 
  

R I R I R I

R I

    (9) 

The motion of the feature point is calculated with the 

misalignment [Δxf, Δyf, Δzf]T, which is equal to the motion 

estimation with [Δx0, 0, Δz0]T. Therefore, [Δxf, Δyf, Δzf]T can 

be estimated with [Δx0, 0, Δz0]T. 

C. Rotation Axis Estimation 

When our nanorobotic manipulation system rotates the end 

effector, noticeable displacements along the u-axis in SEM 

images within the image space {C} occur. These 

displacements result from aforementioned mechanical 

misalignment, leading to inaccuracies in our kinematic model 

and consequently introducing trajectory errors in the in-situ 

rotational motion. Therefore, to achieve high-precision off-

axis rotational motion, we cannot crudely assume that the 

direction of the rotation axis coincides with the y-axis of the 

motion space {M}. A precise pre-calibration of the rotation 

axis is required. In this paper, the rotation axis f is 

characterized by its normalized orientation vector f in a 

specific coordinate system, for instance, fM is a normalized 

orientation vector of the rotation axis f in {M}. 

First, we recall the auxiliary coordinates {Cʹ} introduced in 

Section II. A. It serves as an intermediary coordinate system 

between the motion space {M} and the image space {C}, 

maintaining orthogonally to meet the assumption in (3) while 

containing orientation information from {C} for scaling. To 

transfer the motion in space {M} to the coordinate system {Cʹ} 

and extending the optical axis into the image space, we 

introduce the transformation matrix JCʹ
* and the transformation 

matrix JC
* which is extended from the image Jacobian matrix 

Jc. The matrix JCʹ
* is an orthogonal transformation matrix 

with the first row vector and the third row vector orientations 

similar to the image Jacobian matrix JC and the second row 

vector as the cross product of the first and third row vectors. 

The matrix JC
* is an orthogonal transformation matrix with the 

first row vector and the second row vector same as the image 

Jacobian matrix JC and the third row vector as the cross 

product of the first and second row vectors. The matrix JCʹ
* 

and the matrix JC
* can be expressed as follows  

norm( )

norm( ) norm( ) , =

norm( )

   
   

=  = 
   
      

1 1

* *

3 1 2 3 1 2

3 3

C' C

J J

J J J J J J J J

J J

，   (10) 

where J1 and J2 are respectively the first and second row 

vector of image Jacobian matrix JC, norm(‧) represents 

normalization. Consequently, we have the rotation matrix for 

the rotary angle θ around the rotation axis f in {M} can be 

computed based on fCʹ as follows. 

1 1

'( , ) ( , )( ) ( ) ( , )( )M Cf f z  − −= =* * * * * *

C' C' C' C'
R J R J J S R J S  

(11) 

where S* is the rotation matrix which can transform {Cʹ} to a 

new auxiliary coordinate system, aligning its wʹ-axis with the 

rotation axis f. 

Next, we need to calibrate the direction of the rotation axis 

in {Cʹ}. To this end, it is necessary to identify at least three 

feature points along the optical axis within the SEM images. 

As illustrated in Fig. 5, two eigenvectors formed by these 

three points, with zero components along the optical axis in 

the image space {C}. As a rotation is executed, feature vectors 

can be tracked to observe the changes induced by the rotation 

operation. Taking n tracked feature vectors, the vectors in {Cʹ} 

can be calculated from vectors in {C} as: 

1

'

( )

0 0

i i

i i

C C

u u

v v−

    
   
 = 

   
      

* *

C' C
J J                      (12) 

where [Δui, Δvi]T is the ith vector of feature in {Cʹ} or {C}. 

In terms of a vector [Δu, Δv, 0]T in {C}, the component of 

the corresponding vector on the wʹ-axis in {Cʹ} is zero. 

Therefore, the feature vectors after rotation can be calculated 

as follows. 

1

' '

' '

'

( , ) ( , ) ( ) '

0 0 '

C C

C C C

u u u

f v f v v

w

  −

       
     
 =  = 

     
          

* *

C' C
R R J J  (13) 

Focused on the upper two rows, the equation can be 

expressed as following. 

' '

' ' ' ' ' '

' ' ' ' ' '

x x y x z

x y z y y C C

f f v c f f v f s u u

f f v f s f f v c v v

   

   

+ −       
=     + +      

(14) 

Following several calibration trials, fCʹ = [fxʹ, fyʹ, fzʹ]T can be 

determined as follows. 
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11 22 21 12

11 12 1

21 22

1 1

1 1' '

' , ' , '
2

( )

... ' ... '
,

... ' ... '

x y z

T T

n n

n nC C

r c r c r r
f f f

v v s

r r

r r

u u u u

v v v v

 

  

−

 − − −
 = = =




 
=  

 
       
 = =   

       

f f f f

f f

X X X Y

X Y

      (15) 

where n is the number of axis calibration trials. It’s worth 

noting that the positiveness and negativeness of fxʹ, fyʹ can be 

observed and judged from (r21 + r12).  

Final, the rotation axis in {M}, denoted as fM, can be 

calculated using the following equation. 

1

'( )−= *

M C' C
f J f                                 (16) 

And the rotation matrix about rotation angle θ over f in {M} 

can be calculated referring to (16) by known [fxʹ, fyʹ, fzʹ]T and 

rotation angle θ.  

IV. HIGH-ORDER ITERATIVE LEARNING CONTROL WITH 

KALMAN FILTERING BASED OBSERVER 

Based on the kinematic model established earlier, achieving 

high-precision off-axis in-situ rotation still necessitates an 

efficient real-time compensation algorithm. In this section, we 

first introduce an iterative learning framework via full-state 

feedback and then elaborate on how full-state estimation is 

obtained through Kalman filtering. Finally, the paper briefly 

analyzes the stability of the overall system under the proposed 

control strategy which theoretically ensures the effectiveness 

of the proposed compensation algorithm for achieving high-

precision off-axis in-situ rotation. 

A. Iterative Learning Control (ILC) 

Leveraging the repeatability of the rotational manipulation, 

the idea of iterative learning is employed to gradually reduce 

the offset between trajectory of the observed object (cantilever) 

and the desired position after each round of rotation, then 

ultimately achieving high-precision performance. 

In virtue of the dynamic model (4), we propose the 

following ILC strategy. 

( , 1) ( , ) ( , 1)t k t k t k+ = +  +
0

u u K w                   (17) 

where u(t, k) represents the compensation input series at the tth 

step in the kth iteration and u(t+1, k) the input signal at the (t + 

1)th step in the kth iteration. K0 is the learning rate parameter. 

w(t,k) is a proper defined full-state error signal reflecting the 

displacement of the observed object (cantilever) is at the tth 

step in the kth iteration, which is provided by the Kalman filter 

and discussed in the forthcoming subsections. 

Unlike conventional iterative learning control [32], here, due 

to limited field of view (FoV) at high magnification under 

SEM, an arbitrary input for the first iteration cannot ensure the 

target object (cantilever) remain in SEM image. Thus, the 

initial input series are needed to be set properly. With the aid 

of calibration in Section III. B, the initial input series can be 

calculated as 

 ( ,1) ( ( , ))t f t = −  
0

u I R X                     (18) 

where Δθ is the control step, t · Δθ is the rotation angle at tth  

step and X0 is set to be the pre-calibrated misalignment. This 

initial input compensation significantly constrains the 

displacement of the observed object.  

B. Kalman Filter-based Observer 

To facilitate the implementation of the proposed Iterative 

Learning Control (ILC) as outlined in equation (18), a crucial 

component is the full-state error signal w(t, k), which is 

contingent upon the precise spatial position of the observed 

object. Obtaining such a position is inherently challenging due 

to the limitations of SEM vision, which provides only 2D 

images, thus lacking depth information. Fortunately, as 

elucidated in Section II. B, it is observed that the trajectory of 

the observed object, specifically the cantilever, can be 

conceptualized as a composite of a circular path and subtle 

random perturbations, approximated as Gaussian noise. 

Consequently, the Kalman filter offers an effective and 

concise methodology for estimating the spatial position state 

by iteratively amalgamating predictions from the model and 

observations from SEM. The employed Kalman filter is 

Memory 
(u(t, k), e(t, k)) 

Fig. 6. Diagram of the proposed iterative learning control for in-situ rotating with Kalman filtering-based observer. The control input combines the 

previous input series and the high-order feedback regulation through Kalman filter-based observer and last iteration. 

SEM Vision 

Feedback 
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PLANT 
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2, …,N 
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+ 
+ 

Desired output 
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d
 

+ 
- e(t, k) 

+ 
+ 

w(t, k) 

u(t, k) 

u(t, k - 1) 

u(t, k) 

Δe(t, k) 
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delineated as follows: 

1

1

ˆ ˆ
predictor

t

n

T

−

=


= + +


 = +

1

-

t t t n

- *

t t -1

X AX Bu E u

P AP A Q

−               (19) 

observation                t t=Y CX                             (20) 

and 

1( )

ˆ ˆ ˆcorrector ( ) 

( )             

T T

t t

− = +


= + −
 = −

- - *

t t t

- -

t t t

-

t t t

K P C CP C R

X X K Y CX

P I K C P

                 (21) 

In (19)-(21), 
1

ˆ
t−X  is the estimation of the spatial position of 

the observed object at time step k - 1, ut is the input signal at 

the tth step, as defined above in (18). Considering the 

kinematics model (4), we have parameter setting as 

3 3( , ), , ( , ),f f     −  
C

A R B I E I R C J    (22) 

The estimation ˆ -

t
X  of the spatial position of the observed 

object at time step t purely based on the kinematics model. 

The initial spatial position X0 is set to be the misalignment. 

Yt is the position on the image plane where the origin of the 

image plane is aligned to the origin of the coordinate system 

{E}. Note, the observation Yt cannot be extracted directly 

from SEM image since the origin of coordinate system {E} is 

unknown on image plane. Through relative displacement by 

the initial position, the observation Yt can be calculated from 

SEM image as following  

 
0t t= − + 

d
Y y y C X                            (23) 

where yt is the position on image plane at tth step, yd is the 

desired output as same as the initial position on image plane 

and X0 is the initial spatial position. 

Q* and R* are the covariance matrices associated with the 

spatial position prediction and observation of the observed 

object (cantilever). As discussed in the preceding Section II. B, 

an examination of prediction noise revealed its independence 

along each axis. Consequently, Q* in (19) and R* in (21) can 

be configured as diagonal matrices. Considering the detection 

errors in the experiment, inherent image errors due to 

resolution limitations, and for simplicity, the values on the 

diagonal of Q* are uniformly set to 1000000, while the values 

on the diagonal of R* are all set to 1. This implies that 

estimated position relies more on observation, which helps 

avoid large variation between model and real trajectory. The 

initial value of the state estimation covariance matrix P0 is 

also set as a scaled identity diagonal matrix, with the values on 

the diagonal set to 100 for simplicity. 

Finally, the estimation of the spatial position Xk of the 

observed object (cantilever) is obtained by a weighted 

combination of the prediction and observation. The estimation 

of spatial position through Kalman filter then facilitates the 

full-state feedback compensation. 

C. High-order Feedback Control 

As illustrated in Fig. 6, in each iteration (one revolution of 

cantilever), within each iteration corresponding to one 

revolution of the cantilever, the input series from the 

preceding iteration is referenced through the high-order 

feedback error signal w(t, k) as delineated below. 

0

differential displacement in the previous iterationcurrent displacement

( , ) ( , ) ( 1, 1) ( , 1)t k t k t k t k= − + + − − −w X X X X      (24) 

The spatial states, such as X(t, k), are provided by the Kalman 

filter-based observer. Due to space limitations, the 

convergence of the observation error is not discussed here. 

Note that, in contrast to the conventional iterative learning 

control [32], here, w(t, k) not only concerns the displacement 

in the last iteration, but also accounts for the differential 

displacement on the current tth step, which motivates the name 

of ‘high-order feedback’. Note that in the first iteration, only 

the displacement on the current tth step is considered. With the 

displacement signed as e(t, k), the expression of feedback term 

can be simplified as follows. 

( , ) ( , ) ( , -1)t k t k t k= + w e e                         (25) 

In summary, we proposed a Kalman filter-based high order 

ILC, where the iterative learning framework capitalizes on the 

inherent repeatability in rotation, complemented by the 

Kalman filtering-based observer, which facilitates state 

estimation through the integration of prediction and 

observation. This integration effectively minimizes disparities 

between the model and the actual trajectory, concurrently 

addressing random noise concerns. Within the context of high-

order feedback design, the inclusion of both these 

displacements, encompassing their proportional and 

differential information from the preceding iteration during 

rotary motion, contributes to swift convergence and 

heightened precision within the designed controller. The 

efficacy of the proposed control methodology will be 

scrutinized, and comparative assessments will be conducted 

with alternative methods in the forthcoming experiments 

outlined in Section V. 

D. Stability Analysis  

To distinguish the estimation Xt in (21) and the true state in 

(4), in the following we rewrite the dynamic model (4) 

transforming as follows: 

1

0

( 1, ) ( , ) ( , ) ( , ) ( , )

( 1, ) ( 1, )

t

i

t k t k t k i k t k

t k t k

−

=

+ = + + +

+ = +

X AX Bu E u δ

Y CX

  (26) 

where B is an identical matrix with appropriate dimensions. 

And {0,1,2,..., }t N , {1,2,..., }k    for some positive integer N. 

The control objective is forcing ( , ) ( )t k t→ dX X  at each time 

instant. In this paper, we have ( ) (0,1)t =dx x . 

For (26), it can be rewritten as 
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( 1, ) ( , ) ( , ) ( , )

( 1, ) ( 1, )

t k t k t k t k

t k t k

+ = + +

+ = +

X AX Bv δ

Y CX
       (27) 

where 
1

0
( , ) ( , ) ( , )

t

i
t k t k i k

−

=
= + v u E u . 

For system (28), we assume the following assumption holds, 

which is general in the ILC committee. 

Assumption 1: There exists a unique bounded input sequence 

vd(t) such that the system state X(t, k) follows Xd(t) with a 

prescribed accuracy ε as follows: 

 0, , ( , ) ( )t N t k t   − dX X . 

Assumption 2: The initial condition of (27) is known as 

calibration, i.e. X(0, k) = Xd(0) for all {1,2,..., }k   . 

Assumption 3: External disturbance δ(t, k) is nonrepetitive, 

but the variations of δ(t, k) with respect to the iteration k are 

bounded with a positive constant δf , i.e. 

( , 1) ( , ) ft k t k + − δ δ  

The control law is given as 

( , 1) ( , ) ( , 1)

( , 1) ( , 1) ( ) ( 1, ) ( , )

t k t k t k

t k t k t t k t k

+ = + +

+ = + − + + −

0

d

v v K w

e X X X X
    (28) 

To facilitate subsequent analysis, we apply a time shift to 

Xd(t), i.e. Xd(t) in (28) is replaced by Xd(t + 1). This operation 

is reasonable, as Xd(t) exhibits a constant nature in this article. 

Then, the control law (28) can be rewritten as  

( , ) ( , ) ( , )

( , 1) ( , ) ( ( 1, ) ( 1))

t k t k X t k

t k t k X t k t

= +

+ = + + − +

0

0 d

v v K

v v K X
       (29) 

Now, we can rewrite the system (27) and control law (29) as 

( 1, ) ( , ) ( , ) ( , )

( 1, ) ( 1, )

( , 1) ( , ) ( ( 1, ) ( 1))

t k t k t k t k

t k t k

t k t k t k t

+ = + +

+ = +

+ = + + − +0 d

x AX Bv δ

y CX

v v K X X

        (30) 

where = + 0A A BK . 

Define the tracking error on iteration k as 

( , ) ( , ) ( )t k t k t= −
d

e X X  

In addition, we use ( , ) ( 1, )t k t k= +z X , then we have the 

( , ) ( 1, ) ( 1)t k t k t= + − +z de X X , the control law thereby becomes 

( , 1) ( , ) ( , )t k t k t k+ = + 0 zv v K e . 

Let 

(1, ) (0, )

(2, ) (1, )
( ) , ( ) ,

( , ) ( 1, )

(1) (0, )

(2) (1, )
, ( )

( ) ( 1, )

k k

k k
k k

N k N k

k

k
k

N N k

   
   
   = =
   
   

−   

   
   
   = =
   
   

−  

d

d

d

d

X v

X v
Z U

X v

X δ

X δ
Z F

X δ

 

Based on the lifted-vector-matrix technique above, system 

(30) can be reformulated as an input-output transmission form 

described by 

( ) ( ) ( )k k k= +Z HU F                             (31) 

( 1) ( ) ( )k k k+ = +
0 z

U U K E                             (32) 

( ) ( )k k= −
z d

E Z Z                                       (33) 

where we have 

1 1

,

N N− −

   
   
   = =
   
   
   

0 0 0 0

0 0

B I

AB B A I
H

A B AB B A A I

  

In this article, the following lemmas are introduced before 

the main result is presented. 

Lemma 1.1: [1] For a matrix n nP , there must exist a 

matrix norm     such that 

( )  +P P  

where 0  , ρ(P) is the spectral radius of matrix P. 

Proof: According to the Jordan decomposition theorem, 

there exists an invertible matrix Q, such that 

1 1

2 2

1

1 1

0 0 0

0 0 0

0 0 0

0 0 0 0

n n

n

 

 

 



−

− −

 
 
 
 =
 
 
 
 

Q PQ  

where λi(i = 1, 2, 3, …, n) are the eigenvalues of matrix P and 

ψj = 1 or 0, j = 1, 2, …, n – 1. Let D = diag(1, κ, κ2, …, κn - 1), 

and one has 

1 1

2 2

1 1

1 1

0 0 0

0 0 0

0 0 0

0 0 0 0

n n

n

 

 

 



− −

− −

 
 
 
 ==
 
 
 
 

D Q PQD  

Then, define the matrix norm 

1 1− −


=P D Q PQD                        (34) 

One can get 1 1 max ( ) ( )i   − −


 + = +

i
D Q PQD λ P . 

Lemma 1.2: [1] For a matrix n nP , a vector nX , and 

an arbitrary matrix norm    , there exists a vector norm 

*
    such that 

* *
PX P X  

Proof: For any vector 0 n   , define the vector norm 

T

*
=X Xχ  

where     is the matrix norm in (36). Then, one have  
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T T

* **
=   = PX PXχ P Xχ P X  

From (34), we have 

( 1) ( 1)

( 1) ( 1)

( 1) ( 1) ( ) ( )

( 1)

( 1)

k k

k

k k k k

k k

k

+ = + −

= + + + −

=

+

++ + + + −

z d

dz

z z

E Z Z

HU F Z

HUE E

E

F Z





 

In view of (33), one can obtain that 

0( 1) [ ( ) ( )] ( 1) ( )

[ ( ) ( )]

( ) ( ) ( )

( ) ( )

( 1)

( 1)

k

k

k k k k k

k k

k k

k k





+ = + + + +

− +

= + +

= +

+

+

0

z z

z

z

zz

z

E

E

H U K E F E

HU F

I HK E F

L

E

E F









  

where ( ) ( 1) ( )k k k = + −F F F , and  

1N −

+ 
 

+
 =
 
 

+ 

0

0

0

0 0

0

I BK

AB I BK
L

A B AB I BK

 

From Assumption 3, there must exist positive constants 
F  

satisfying the inequality 

*
( ) Fk F  

Together with the fact that, for a lower triangular matrix 
n nP , we have 

kk P P . By using Lemma 1.2, we have 

1

* *
0

1

1

*

( 1) (0)

1 (1 )
(0)

1

k
k ik

F

i

k

k

F

k 



−+

=

+

+

+  +

 −
 +

−

z z

z

E L E L

L
L E

L

 

Then, together with the fact that (0)zE  is bounded, we 

have 

1

* *

1
lim ( 1) lim (0)

1

k

F
k k

k 
+

→ →
+  +

−
z z

E L E
L

 

Consider Lemma 1.1, we know, if the selection of K0 

satisfies the condition 0 ( ) 1   = + + 0I BK  for κ > 0, then 

we have 
*

( 1) / (1 )Fk +  −zE L . Therefore, the tracking 

error between X(t) and Xd(t) will converge to a neighborhood 

of the origin, together with the Assumption 2.  

Remark 1: From the analysis process, the convergence 

performance of the algorithm we propose is only related to the 

magnitude of external disturbances varying with iterations. 

The smaller the magnitude, the higher the convergence 

accuracy. This means that even if the in-situ control system is 

subjected to significant external disturbances, as long as these 

disturbances is repetitive with respect to the iteration number, 

our algorithm can keep probe stationary in its initial position. 

V. EXPERIMENT AND RESULTS 

This section validates, through experiments, the capability 

of the proposed nanorobotic manipulation system, in 

conjunction with the high-order iterative learning control 

algorithm based on Kalman filtering, to achieve high-precision 

off-axis in-situ rotation. Additionally, a comparative analysis 

is conducted with PID controllers and model predictive 

control (MPC) to underscore the superior performance of the 

proposed method. 

TABLE I. EXPERIMENTAL RESULTS ON OFF-AXIS ROTATING CONTROL METHODS 

Exp. 

No. 
Control method Magnification 

Step angle 
Round 

No. 

Average position 

shift 

Maximum position 

shift 
Standard deviation 

Δθ(°) / Savg (nm) Smax (nm) SD (nm) 

1 None / 1 / 417058 866532 311389 

2 PID 1000 1 / 3462 24609 2926 

3 MPC 1000 1 / 4466 41208 5545 

4 

Ours 

500 1 
1 2399 19204 2426 

4 1924 11893 1691 

5 

1000 

0.5 
1 1700 47620 2765 

5 1441 11016 1336 

6 1 
1 2149 13002 1916 

4 1374 10050 1386 

7 5 
1 7466 22444 4904 

4 3635 17418 2622 

8 2000 1 
1 2236 12207 1943 

2 1921 15021 1818 

 

Fig. 7. Experimental nano-manipulation platform equipped with ECSx3030, 

ECR3030 nanopositioners (Attocube Systems AG), and JEOL JSM-

IT500HR/LA InTouchScope™ SEM. AFM cantilever is used as robot end-

effector for in-situ point rotating control validation. 
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A. Experimental Setup 

Fig. 7 displays the established nanorobotic manipulation 

system. The scanning electron microscope used in this system 

is JEOL JSM-IT500HR/LA, operating in high vacuum mode 

to image samples by detecting secondary electrons, under 10 

KV acceleration voltage, which captures 7 frames per second 

(frame/s) with image size of 640 × 480. The cantilever 

employed in this experiment was NANOSENSORS ATEC-

FM. The translational nanopositioners, which are orthogonally 

mounted in this nanorobotic manipulation system, were 

Attocube piezoelectric ECSx3030, representing x-, y-, z-axes. 

The rotational nanopositioner is an Attocube piezoelectric 

ECR3030, with the rotation axis situated close to y-axis in 

{M}. The translational positioners offer repeatability precision 

of 50 nm. 

 B. Evaluation Metric 

To properly assess the performance of the rotary 

manipulation, we utilize the positional shift of ith step, denoted 

as SFT(i), obtained from the SEM images and calculate the 

average position shift SFTavg, during the entire rotating process 

as follows: 

1

1
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( )
1

( ) ( ( ) ) , ( )

0 0

P target
T

P target avg i

u i u

SFT i v i v SFT SFT i
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−

=

   
   

= − =
   
      

C
J

(35) 

where JC is the image Jacobian matrix at the current 

magnification for transformation from 3D motion space {M} 

to u-v image plane in {C}. The coordinates uP(i) and vP(i) 

represent the coordinates along the u-axis and v-axis, 

respectively, of the point projected onto the image plane at the 

ith instant for a given feature point. Similarly, utarget and vtarget 

denote the coordinates along the u-axis and v-axis, 

respectively, corresponding to the projection of the initial 

values (initially positioned rotational target values) onto the 

image plane. 

In addition to the average position shift, we also define the 

maximum position shift SFTmax, and the standard deviation of 

position (SD) throughout the entire rotating process as below: 

1
max{ ( )}max

i n
SFT SFT i

 
=                            (36) 

1

1
( ( ) )

1

n

avgi
SD SFT i SFT

n =
= −

−
                 (37) 

The image Jacobian matrix is computed based on the 

calibrated Jacobian matrix and the applied magnification [35]. 

Specifically, for the experiments conducted in this study at a 

magnification of 1000, the image Jacobian matrix is 

established as follows: 

2.20 4 5.07 3 6.25 5

5.11 3 8.66 5 5.00 6  pixel/nm

3.08 8 3.18 7 2.59 5

e e e

e e e

e e e

− − − − 
 

= − − − − −
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 − − − − − − 

C
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To calibrate the initial misalignment, we implement the 

methodology detailed in Section III.B through four movement 

trials involving a rotation of 15°, This process yields the initial 

misalignment vector [Δxf, Δyf, Δzf]T = [396123, 0, 214680]T 

nm. Subsequently, employing the approach outlined in Section 

III.C, we capture two images before and after a rotation angle 

of 60° to calibrate the rotation axis. The outcome of this 

calibration procedure estimates the rotation axis, denoted as 

vector fM, as [0.098, -0.9999, 0.0098]T. Regarding observer, 

the values on the diagonal of Q* are uniformly set to 1000000, 

while the values on the diagonal of R* are all set to 1. 

C. Off-Axis In-situ Rotation 

The primary objective of off-axis in-situ rotation is to 

maintain the target point, situated at the tip of the AFM 

cantilever, in-situ through rotational manipulation. The SEM 

images in this experiment with tip rotation of 360° and step 

size of 1° are shown in Fig. 8. The tip's position is monitored 

through edge point detection using the Canny operator, 

implemented with a strong threshold of 150 and a weak 

threshold of 250. Initially, it is noted that the tip displays an 

offset of about 451 μm from the rotation axis. This value is 

considerably larger than the field of view at a magnification of, 

for example, 1000, which is constrained to 128 μm. 

Additionally, the rotation axis is observed to closely align with 

the y-axis in {M}, signifying that the offset is more 

pronounced along the u-axis in the image space {C}.  

Fig. 8. SEM images of a cantilever’s in-situ rotating experiment with rotation range of 360° and rotation step size of 1°. (a) θ = 0°. (b) θ = 30°. (c) θ = 60°. (d) θ 

= 90°. (e) θ = 120°. (f) θ = 150°. (g) θ = 180°. (h) θ = 210°. (i) θ = 240°. (j) θ = 270°. (k) θ = 300°. (l) θ = 330°. The magnification is 1000 and the length of scale 
bar is 10 μm. The AFM cantilver used here is NANOSENSORS ATEC-FM. 

(a) 0° (b) 30° (c) 60° (d) 90° (e) 120° (f) 150° 

(g) 180° (h) 210° (i) 240° (j) 270° (k) 300° (l) 330° 
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To validate the efficiency of our system under various 

working magnifications while considering different 

manipulation requirements, experiments employing the 

proposed high-order ILC method were conducted at different 

control step sizes and magnifications. Specifically, the SEM 

magnification was set at 500, 1000, and 2000. Three distinct 

step sizes, namely 0.5°, 1°, and 5°, were selected. But the 

learning rate, denoted as K0, was consistently set to diag{-0.9, 

-0.9, -0.9} for all experiments.  

The visual results of some representative experiments are 

depicted in Fig. 9. Specifically, Fig. 9(a)-(c) illustrate the real 

trajectory of the robot, the positioning error of the second tip, 

and the average positional deviation across different iterations 

in three off-axis in-situ rotation experiments with step sizes of 

0.5°, 1°, and 5°, and a magnification of 1000. It is evident that 

larger step sizes result in greater positional errors with each 

rotation, leading to increased oscillations in the trajectory. 

Nevertheless, under all three step sizes, the algorithm 

demonstrates convergence, and the proposed control method 

performs well, particularly with step sizes of 0.5° and 1°, 

where the average positional deviation is notably low. With a 

step size of 1°, Fig 9(d)-(f) demonstrates the effect of 

magnifications of 500, 1000, and 2000 on the performance of 

rotational manipulation. As illustrated, a magnification of 500 

introduces larger positional errors and higher oscillations. 

However, a larger magnification does not necessarily always 

yield better results, as evident in Fig. 9(f). 

Table I enumerates further quantitative performance metrics 

of in-situ rotation, encompassing average position shift, 

maximum shift, and standard deviation. Fig. 9, in conjunction 

with Table I, collectively corroborates the effectiveness of the 

proposed off-axis in-situ rotation control method across 

varying magnification factors and rotation step sizes, 

maintaining the target point close to its original position. 

Moreover, with an increasing number of iterative rotations, the 

ILC converges, thus the target point progressively approaches 

its original position in terms of the mean value. Overall, the 

proposed method demonstrates rapid convergence and 

stability in multiple iterations. It exhibits more precise 

performance, particularly at smaller step sizes. The method 

achieves optimal results in experiments conducted at a 

magnification factor of 1000x and a step size of 1°. In this 

scenario, the average position shift decreases significantly, 

from 417.058 μm to 1.374 μm, representing a remarkable 

99.671% improvement in in-situ rotation accuracy. 

D. Comparative Experiments 

To further underscore the superiority of the proposed 

method, based on the same modeling framework as outlined in 

Section III. A, we conducted comparative analyses with 

widely-recognized control methods, specifically PID control, 

and Model Predictive Control (MPC). Experimental 

parameters for the comparative methods align with those 

specified in Section V.C with magnification of 1000 and step 

size of 1°. For the PID controller, the proportional gain KP is 

set to 0.8, and the derivative gain KD is set to 0.1. In the case 

of the MPC method, both the state and terminal state 

weighting matrices are configured as diag{2, 2, 2}, while the 

input weighting matrix is empirically determined as diag{10, 

10, 10}. 

The comparative results of the three methods are illustrated 

in Fig. 10 and in Table I. From Fig. 10(a), it is evident that the 

proposed method yields a smoother trajectory and smaller 

positional offsets. An empirical explanation to this fact is that 

Fig. 9. Rotating experimental results at different magnifications and step sizes. (a)-(c) Real path of linear nano-positioners’ compensation, position error of point 

of interest on image plane, and trend of average position error with increase of rounds under different step sizes. (d)-(f) Real path of linear nano-positioners, 

position error on image plane, and trend of average position error with increase of rounds under different magnifications. 
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when compared to the proposed method, both PID and MPC 

are more prone to deviating from the limited field of view. 

This tendency arises because PID is model-free, while MPC 

relies on the accuracy of the model. The method proposed in 

this study effectively balances these aspects, demonstrating a 

commendable utilization of prior knowledge and successful 

learning of properties related to the mechanical misalignment. 

The average values and standard deviations of the proposed 

method and the comparative methods are depicted in Fig. 10(c) 

and Table I, reflecting the superior precision of the proposed 

method for the off-axis in-situ rotation under SEM. 

E. Discussion 

The superiority of the off-axis in-situ rotation control 

method proposed in this paper is primarily manifested in the 

following aspects: Firstly, unlike linear motion, the rotation of 

a nanorobotics device generates significant spatial 

misalignment while undergoing precise attitude 

transformations. The prevailing approach to address this 

involves aligning the end effector to have the tracking point 

centered around the axis of rotation. However, these methods 

demand strict hardware configurations and the use of two 

nanometer positioning devices. In this paper, we position a 

rotary nano-positioner mounted at the end joint and employ 

the proposed method to maintain the target point in-situ during 

the off-axis rotational manipulation. Consequently, the 

nanorobotic manipulation system imposes no restrictions on 

the direction of the rotation axis, thereby relaxing system 

configurations. Secondly, the proposed control method fully 

leverages the repeatability of in-situ rotation, demonstrating 

iterative learning capabilities and an asymptotically converged 

precision in is-situ rotation. Specifically, our method restricts 

the average displacement of the target point from the in-situ 

position to 1.374 μm. In comparison, without compensation, 

the average displacement of the target point is 417.059 μm. 

Using a PID controller, only a reduction to 3.462 μm in 

average position deviation is achievable, while employing the 

MPC method results in a reduction to 4.466 μm. Similarly, our 

method outperforms others in terms of maximum position 

deviation and standard deviation during in-situ rotation (see 

Table I). Finally, our method exhibits excellent stability under 

different step sizes and SEM magnification settings. Some 

empirical insight on the relation between specific 

configurations and the precision in in-situ rotation is given as 

follows. In comparative rotation experiments with different 

step sizes, the positional deviation at a 1° step size is less than 

that at a 5° step size, attributed to the immediate feedback 

provided by the smaller step size. However, due to 

uncontrollable random mechanical noise, the performance at a 

0.5° step size is slightly inferior to that at a 1° step size. In 

rotation experiments at different magnification settings, the 

positional error at a 500x magnification is less than that at a 

1000x magnification. This difference can be attributed to the 

higher resolution images provided by SEM at a 500x 

magnification, with an approximately 200 nm/pixel resolution. 

On the other hand, the performance at a magnification of 

2000x is poorer than that at 1000x, as the Jacobian matrix at a 

magnification of 2000x is estimated based on the Jacobian 

matrix at a magnification of 1000x, leading to larger 

observation errors in the Kalman filter. 

VI. CONCLUSION 

This paper establishes an advanced nanorobotic system and 

its control methodology, achieving precise off-axis in-situ 

rotation within a SEM with an average deviation of less than 

1.374 μm. This result represents a significant improvement of 

99.671% compared to the uncompensated condition. Initially, 

the nanorobotic manipulation system is constructed by 

utilizing a nanometer rotatory positioner as an end joint. 

Subsequently, we model the system and provide a calibration 

method that does not require alignment with the central axis 

and rotation axis. Calibration is accomplished with a single 

view, consistent with the visual feedback settings during the 

final rotation operation. Lastly, based on the established model, 

we propose an iterative learning control method using the 

Kalman filter and conduct the stability analysis and 

convergence proof. Through carefully designed experiments, 

we validate the stability, reliability, and performance of the 

proposed technique. This off-axis rotation control strategy can 

be seamlessly applied to other nanorobotic manipulation 

Fig. 10. Comparative experiment results over control strategy with PID controller and MPC. (a) Real paths for linear nano-positioners’ compensation on tip 

motion displacement with PID, MPC and the proposed method. (b) Comparison on position error of point of interest on image plane. (c) Comparative results of 

mean value and standard deviation over position error. 
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systems, relaxing the need for linear degrees of freedom 

specifically dedicated to centering. This has implications for 

various research applications, including defect detection in 

nanomaterials, 3D nanoscale observation, and characterization 

of nanomaterial distortions. 
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